-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDSA_Fibonacci_huge_number_modulo.cpp
83 lines (68 loc) · 2.81 KB
/
DSA_Fibonacci_huge_number_modulo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// fibonacii term with modulo
// author: jaydattpatel
/*
Given two number N and M. The task is to find the N-th fibonacci number mod M.
In general let FN be the N-th fibonacci number then the output should be FN % M.
However, for such values of N, a simple recursive approach to keep calculating N Fibonacci numbers with a time complexity of O(2N) should be avoided. Even an iterative or a Dynamic Programming approach with an algorithm looping for N iterations will not be time-efficient.
This problem can be solved using the properties of Pisano Period.
For a given value of N and M >= 2, the series generated with Fi modulo M (for i in range(N)) is periodic.
The period always starts with 01. The Pisano Period is defined as the length of the period of this series.
To understand it further, let’s see what happens when M is small:
i 0 1 2 3 4 5 6 7 8 9 10 11
Fi 0 1 1 2 3 5 8 13 21 34 55 89
Fi mod 2 0 1 1 0 1 1 0 1 1 0 1 1
Fi mod 3 0 1 1 2 0 2 2 1 0 1 1 2
For M = 2, the period is 011 and has length 3 while for M = 3 the sequence 01120221 repeats after 8 nos.
*/
#include <iostream>
using namespace std;
unsigned long long pisano(unsigned long long m)
{
unsigned long long prev = 0;
unsigned long long curr = 1;
unsigned long long res = 0;
for(int i = 0; i < m * m; i++)
{
cout<<i+1<<" IN : "<<"Prev: "<<prev<<" "<<"curr: "<<curr<<" "<<"res: "<<res<<" "<<endl;
unsigned long long temp = 0;
temp = curr;
curr = (prev + curr) % m;
prev = temp;
if (prev == 0 && curr == 1)
{
res = i + 1; //frequency of sequence count
cout<<"sequence repeat : "<<i+1<<endl;
}
cout<<i+1<<" OT : "<<"Prev: "<<prev<<" "<<"curr: "<<curr<<" "<<"res: "<<res<<" "<<endl;
}
return res;
}
unsigned long long get_fibonacci_huge_naive(unsigned long long n, unsigned long long m)
{
long pisanoPeriod = pisano(m);
cout<<"\npisanoPeriod = pisano(m) : "<<pisanoPeriod<<endl;
cout<<"n = n % pisanoPeriod : "<<n<<" \% "<< pisanoPeriod << " = ";
n = n % pisanoPeriod;
cout<<n<<endl;
if (n <= 1)
return n;
unsigned long long prev = 0, curr = 1, next = 0;
for (unsigned long long i = 0; i < n - 1; ++i)
{
next = (prev + curr)%m;
prev = curr;
curr = next;
}
return curr;
}
int main()
{
unsigned long long out;
cout<<"\n--------------get_fibonacci_huge_naive(9999999999999,2)-----------\n";
out = get_fibonacci_huge_naive(9999999999999,2);
cout <<"Output: "<<out << '\n';
cout<<"\n--------------get_fibonacci_huge_naive(9999999999999,3)-----------\n";
out = get_fibonacci_huge_naive(9999999999999,3);
cout <<"Output: "<<out << '\n';
return(0);
}