-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_neural_network_comment1.c~
96 lines (83 loc) · 3.5 KB
/
test_neural_network_comment1.c~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <unistd.h>
#include <mraa/aio.h>
#include <stdio.h>
#include "floatfann.h"
// the basic idea is, you give an array input[] (in our case, 6 variables from 9Dof to the machine learning object fann)
// and the maching learning program returns you an array output[] (in our case, 3 variable for each output)
// the right output has a value bigger than the integer <max>
int main()
{
float gyro_tempX, gyro_tempY, gyro_tempZ, accel_tempX, accel_tempY, accel_tempZ;
float gyro_valX, gyro_valY, gyro_valZ, accel_valX, accel_valY, accel_valZ;
mraa_i2c_context gyro, accel;
float g_res, a_res;
accel_scale_t a_scale = A_SCALE_2G;
gyro_scale_t g_scale = G_SCALE_245DPS;
// uint16_t value;
data_t gd, ad;
data_t Go;
accel = accel_init();
set_accel_scale(accel, a_scale);
set_accel_ODR(accel, A_ODR_100);
a_res=calc_accel_res(a_scale);
gyro = gyro_init();
set_gyro_scale(gyro, g_scale);
set_gyro_ODR(gyro, G_ODR_190_BW_70);
g_res = calc_gyro_res(g_scale);
int i;
int temp0, temp1, temp2,temp3, temp4, temp5, location;
// location to output data, we need 6 temporary data
uint16_t value0, value1, value2, value3, value4, value5;
// the variable to store the refined input data, later put into the input[]
float max; // I guess the right output(decided) by the machine learning has value > max
fann_type *calc_out; // create a machine learning object pointer fann *calc_out
fann_type input[6]; // in our case, we have 6 input variables, fann_type input[3];
struct fann *ann; // I guess <ann> is a pointer to the Fann object
// mraa_aio_context lightsensor0, lightsensor1, lightsensor2;
ann = fann_create_from_file("MOTION_TEST.net");
// lightsensor0 = mraa_aio_init(0); // from here we should substitute by 9dof ignit
// lightsensor1 = mraa_aio_init(1);
// lightsensor2 = mraa_aio_init(2); // to here
while (1) {
temp0 = 0;
temp1 = 0;
temp2 = 0;
temp3 = 0;
temp4 = 0;
temp5 = 0;
max = -100;
for (i = 0; i < 50; i++) {
temp0 += mraa_aio_read(lightsensor0); // from here, we should substitute by 9dof
temp1 += mraa_aio_read(lightsensor1);
temp2 += mraa_aio_read(lightsensor2); // to here
usleep(10000); // DELAY
}
value0 = temp0 / 50;
value1 = temp1 / 50;
value2 = temp2 / 50;
value3 = temp3 / 50;
value4 = temp4 / 50;
value5 = temp5 / 50;
input[0] = (float) value0 / 1000; // collect refined (average)input data, store them into the input array
input[1] = (float) value1 / 1000;
input[2] = (float) value2 / 1000;
input[3] = (float) value3 / 1000;
inout[4] = (float) value4 / 1000;
input[5] = (float) value5 / 1000;
calc_out = fann_run(ann, input);
// pass the refined input data to the machine learning object fann, and let it decide what is the output,
// store the output into calc_out pointer,actually it's an array
for (i = 0; i < 5; i++) {
if (calc_out[i] > max) {
max = calc_out[i];
location = i; // the right output has calc_out value bigger than max
}
}
//we want to print out all the readings and then make a determination of the
//type of motion based on the readings and how it is grouped.
printf("Light sensor values: %d, %d, %d -> location is %d\n", value0, value1, value2, location);
sleep(1);
}
fann_destroy(ann);
return 0;
}