-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathaperture_properties.py
1177 lines (1027 loc) · 34.4 KB
/
aperture_properties.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/bin/env python
import numpy as np
import unyt
from halo_properties import HaloProperty
from dataset_names import mass_dataset
from half_mass_radius import get_half_mass_radius
from kinematic_properties import (
get_velocity_dispersion_matrix,
get_angular_momentum,
get_angular_momentum_and_kappa_corot,
get_vmax,
get_axis_lengths,
)
from recently_heated_gas_filter import RecentlyHeatedGasFilter
from stellar_age_calculator import StellarAgeCalculator
from property_table import PropertyTable
from lazy_properties import lazy_property
from category_filter import CategoryFilter
# index of elements O and Fe in the SmoothedElementMassFractions dataset
indexO = 4
indexFe = 8
rbandindex = 2
class ApertureParticleData:
def __init__(
self,
input_halo,
data,
types_present,
inclusive,
aperture_radius,
stellar_age_calculator,
recently_heated_gas_filter,
):
self.input_halo = input_halo
self.data = data
self.types_present = types_present
self.inclusive = inclusive
self.aperture_radius = aperture_radius
self.stellar_age_calculator = stellar_age_calculator
self.recently_heated_gas_filter = recently_heated_gas_filter
self.compute_basics()
def compute_basics(self):
self.centre = self.input_halo["cofp"]
self.index = self.input_halo["index"]
mass = []
position = []
radius = []
velocity = []
types = []
for ptype in self.types_present:
grnr = self.data[ptype]["GroupNr_bound"]
if self.inclusive:
in_halo = np.ones(grnr.shape, dtype=bool)
else:
in_halo = grnr == self.index
mass.append(self.data[ptype][mass_dataset(ptype)][in_halo])
pos = self.data[ptype]["Coordinates"][in_halo, :] - self.centre[None, :]
position.append(pos)
r = np.sqrt(pos[:, 0] ** 2 + pos[:, 1] ** 2 + pos[:, 2] ** 2)
radius.append(r)
velocity.append(self.data[ptype]["Velocities"][in_halo, :])
typearr = np.zeros(r.shape, dtype="U9")
typearr[:] = ptype
types.append(typearr)
self.mass = unyt.array.uconcatenate(mass)
self.position = unyt.array.uconcatenate(position)
self.radius = unyt.array.uconcatenate(radius)
self.velocity = unyt.array.uconcatenate(velocity)
self.types = np.concatenate(types)
self.mask = self.radius <= self.aperture_radius
self.mass = self.mass[self.mask]
self.position = self.position[self.mask]
self.velocity = self.velocity[self.mask]
self.radius = self.radius[self.mask]
self.type = self.types[self.mask]
@lazy_property
def gas_mask_ap(self):
return self.mask[self.types == "PartType0"]
@lazy_property
def dm_mask_ap(self):
return self.mask[self.types == "PartType1"]
@lazy_property
def star_mask_ap(self):
return self.mask[self.types == "PartType4"]
@lazy_property
def bh_mask_ap(self):
return self.mask[self.types == "PartType5"]
@lazy_property
def baryon_mask_ap(self):
return self.mask[(self.types == "PartType0") | (self.types == "PartType4")]
@lazy_property
def Ngas(self):
return self.gas_mask_ap.sum()
@lazy_property
def Ndm(self):
return self.dm_mask_ap.sum()
@lazy_property
def Nstar(self):
return self.star_mask_ap.sum()
@lazy_property
def Nbh(self):
return self.bh_mask_ap.sum()
@lazy_property
def Nbaryon(self):
return self.baryon_mask_ap.sum()
@lazy_property
def mass_gas(self):
return self.mass[self.type == "PartType0"]
@lazy_property
def mass_dm(self):
return self.mass[self.type == "PartType1"]
@lazy_property
def mass_star(self):
return self.mass[self.type == "PartType4"]
@lazy_property
def mass_baryons(self):
return self.mass[(self.type == "PartType0") | (self.type == "PartType4")]
@lazy_property
def pos_gas(self):
return self.position[self.type == "PartType0"]
@lazy_property
def pos_dm(self):
return self.position[self.type == "PartType1"]
@lazy_property
def pos_star(self):
return self.position[self.type == "PartType4"]
@lazy_property
def pos_baryons(self):
return self.position[(self.type == "PartType0") | (self.type == "PartType4")]
@lazy_property
def vel_gas(self):
return self.velocity[self.type == "PartType0"]
@lazy_property
def vel_dm(self):
return self.velocity[self.type == "PartType1"]
@lazy_property
def vel_star(self):
return self.velocity[self.type == "PartType4"]
@lazy_property
def vel_baryons(self):
return self.velocity[(self.type == "PartType0") | (self.type == "PartType4")]
@lazy_property
def Mtot(self):
return self.mass.sum()
@lazy_property
def Mgas(self):
return self.mass_gas.sum()
@lazy_property
def Mdm(self):
return self.mass_dm.sum()
@lazy_property
def Mstar(self):
return self.mass_star.sum()
@lazy_property
def Mbh_dynamical(self):
return self.mass[self.type == "PartType5"].sum()
@lazy_property
def Mbaryons(self):
return self.Mgas + self.Mstar
@lazy_property
def star_mask_all(self):
if self.Nstar == 0:
return None
if self.inclusive:
return np.ones(self.data["PartType4"]["GroupNr_bound"].shape, dtype=bool)
else:
return self.data["PartType4"]["GroupNr_bound"] == self.index
@lazy_property
def Mstar_init(self):
if self.Nstar == 0:
return None
return self.data["PartType4"]["InitialMasses"][self.star_mask_all][
self.star_mask_ap
].sum()
@lazy_property
def stellar_luminosities(self):
if self.Nstar == 0:
return None
return self.data["PartType4"]["Luminosities"][self.star_mask_all][
self.star_mask_ap
]
@lazy_property
def StellarLuminosity(self):
if self.Nstar == 0:
return None
return self.stellar_luminosities.sum(axis=0)
@lazy_property
def starmetalfrac(self):
if self.Nstar == 0:
return None
return (
self.mass_star
* self.data["PartType4"]["MetalMassFractions"][self.star_mask_all][
self.star_mask_ap
]
).sum() / self.Mstar
@lazy_property
def stellar_MstarO(self):
if self.Nstar == 0:
return None
return (
self.mass_star
* self.data["PartType4"]["SmoothedElementMassFractions"][
self.star_mask_all
][self.star_mask_ap][:, indexO]
)
@lazy_property
def starOfrac(self):
if self.Nstar == 0:
return None
return self.stellar_MstarO.sum() / self.Mstar
@lazy_property
def stellar_MstarFe(self):
if self.Nstar == 0:
return None
return (
self.mass_star
* self.data["PartType4"]["SmoothedElementMassFractions"][
self.star_mask_all
][self.star_mask_ap][:, indexFe]
)
@lazy_property
def starFefrac(self):
if self.Nstar == 0:
return None
return self.stellar_MstarFe.sum() / self.Mstar
@lazy_property
def stellar_ages(self):
if self.Nstar == 0:
return None
birth_a = self.data["PartType4"]["BirthScaleFactors"][self.star_mask_all][
self.star_mask_ap
]
return self.stellar_age_calculator.stellar_age(birth_a)
@lazy_property
def star_mass_fraction(self):
if self.Mstar == 0:
return None
return self.mass_star / self.Mstar
@lazy_property
def stellar_age_mw(self):
if self.Nstar == 0 or self.Mstar == 0:
return None
return (self.star_mass_fraction * self.stellar_ages).sum()
@lazy_property
def stellar_age_lw(self):
if self.Nstar == 0:
return None
Lr = self.stellar_luminosities[:, rbandindex]
Lrtot = Lr.sum()
if Lrtot == 0:
return None
return ((Lr / Lrtot) * self.stellar_ages).sum()
@lazy_property
def bh_mask_all(self):
if self.Nbh == 0:
return None
if self.inclusive:
return np.ones(self.data["PartType5"]["GroupNr_bound"].shape, dtype=bool)
else:
return self.data["PartType5"]["GroupNr_bound"] == self.index
@lazy_property
def Mbh_subgrid(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["SubgridMasses"][self.bh_mask_all][
self.bh_mask_ap
].sum()
@lazy_property
def agn_eventa(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["LastAGNFeedbackScaleFactors"][self.bh_mask_all][
self.bh_mask_ap
]
@lazy_property
def BHlasteventa(self):
if self.Nbh == 0:
return None
return np.max(self.agn_eventa)
@lazy_property
def iBHmax(self):
if self.Nbh == 0:
return None
return np.argmax(
self.data["PartType5"]["SubgridMasses"][self.bh_mask_all][self.bh_mask_ap]
)
@lazy_property
def BHmaxM(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["SubgridMasses"][self.bh_mask_all][
self.bh_mask_ap
][self.iBHmax]
@lazy_property
def BHmaxID(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["ParticleIDs"][self.bh_mask_all][self.bh_mask_ap][
self.iBHmax
]
@lazy_property
def BHmaxpos(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["Coordinates"][self.bh_mask_all][self.bh_mask_ap][
self.iBHmax
]
@lazy_property
def BHmaxvel(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["Velocities"][self.bh_mask_all][self.bh_mask_ap][
self.iBHmax
]
@lazy_property
def BHmaxAR(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["AccretionRates"][self.bh_mask_all][
self.bh_mask_ap
][self.iBHmax]
@lazy_property
def BHmaxlasteventa(self):
if self.Nbh == 0:
return None
return self.agn_eventa[self.iBHmax]
@lazy_property
def mass_fraction(self):
if self.Mtot == 0:
return None
return self.mass / self.Mtot
@lazy_property
def com(self):
if self.Mtot == 0:
return None
return (self.mass_fraction[:, None] * self.position).sum(axis=0) + self.centre
@lazy_property
def vcom(self):
if self.Mtot == 0:
return None
return (self.mass_fraction[:, None] * self.velocity).sum(axis=0)
@lazy_property
def spin_parameter(self):
if self.Mtot == 0:
return None
_, vmax = get_vmax(self.mass, self.radius)
if vmax == 0:
return None
vrel = self.velocity - self.vcom[None, :]
Ltot = unyt.array.unorm(
(self.mass[:, None] * unyt.array.ucross(self.position, vrel)).sum(axis=0)
)
return Ltot / (np.sqrt(2.0) * self.Mtot * self.aperture_radius * vmax)
@lazy_property
def gas_mass_fraction(self):
if self.Mgas == 0:
return None
return self.mass_gas / self.Mgas
@lazy_property
def vcom_gas(self):
if self.Mgas == 0:
return None
return (self.gas_mass_fraction[:, None] * self.vel_gas).sum(axis=0)
def compute_Lgas_props(self):
(
self.internal_Lgas,
self.internal_kappa_gas,
self.internal_Mcountrot_gas,
) = get_angular_momentum_and_kappa_corot(
self.mass_gas,
self.pos_gas,
self.vel_gas,
ref_velocity=self.vcom_gas,
do_counterrot_mass=True,
)
@lazy_property
def Lgas(self):
if self.Mgas == 0:
return None
if not hasattr(self, "internal_Lgas"):
self.compute_Lgas_props()
return self.internal_Lgas
@lazy_property
def kappa_corot_gas(self):
if self.Mgas == 0:
return None
if not hasattr(self, "internal_kappa_gas"):
self.compute_Lgas_props()
return self.internal_kappa_gas
@lazy_property
def DtoTgas(self):
if self.Mgas == 0:
return None
if not hasattr(self, "internal_Mcountrot_gas"):
self.compute_Lgas_props()
return 1.0 - 2.0 * self.internal_Mcountrot_gas / self.Mgas
@lazy_property
def Ekin_gas(self):
if self.Mgas == 0:
return None
# below we need to force conversion to np.float64 before summing
# up particles to avoid overflow
ekin_gas = self.mass_gas * ((self.vel_gas - self.vcom_gas) ** 2).sum(axis=1)
ekin_gas = unyt.unyt_array(
ekin_gas.value, dtype=np.float64, units=ekin_gas.units
)
return 0.5 * ekin_gas.sum()
@lazy_property
def GasAxisLengths(self):
if self.Mgas == 0:
return None
return get_axis_lengths(self.mass_gas, self.pos_gas)
@lazy_property
def dm_mass_fraction(self):
if self.Mdm == 0:
return None
return self.mass_dm / self.Mdm
@lazy_property
def vcom_dm(self):
if self.Mdm == 0:
return None
return (self.dm_mass_fraction[:, None] * self.vel_dm).sum(axis=0)
@lazy_property
def Ldm(self):
if self.Mdm == 0:
return None
return get_angular_momentum(
self.mass_dm, self.pos_dm, self.vel_dm, ref_velocity=self.vcom_dm
)
@lazy_property
def DMAxisLengths(self):
if self.Mdm == 0:
return None
return get_axis_lengths(self.mass_dm, self.pos_dm)
@lazy_property
def vcom_star(self):
if self.Mstar == 0:
return None
return (self.star_mass_fraction[:, None] * self.vel_star).sum(axis=0)
def compute_Lstar_props(self):
(
self.internal_Lstar,
self.internal_kappa_star,
self.internal_Mcountrot_star,
) = get_angular_momentum_and_kappa_corot(
self.mass_star,
self.pos_star,
self.vel_star,
ref_velocity=self.vcom_star,
do_counterrot_mass=True,
)
@lazy_property
def Lstar(self):
if self.Mstar == 0:
return None
if not hasattr(self, "internal_Lstar"):
self.compute_Lstar_props()
return self.internal_Lstar
@lazy_property
def kappa_corot_star(self):
if self.Mstar == 0:
return None
if not hasattr(self, "internal_kappa_star"):
self.compute_Lstar_props()
return self.internal_kappa_star
@lazy_property
def DtoTstar(self):
if self.Mstar == 0:
return None
if not hasattr(self, "internal_Mcountrot_star"):
self.compute_Lstar_props()
return 1.0 - 2.0 * self.internal_Mcountrot_star / self.Mstar
@lazy_property
def StellarAxisLengths(self):
if self.Mstar == 0:
return None
return get_axis_lengths(self.mass_star, self.pos_star)
@lazy_property
def Ekin_star(self):
if self.Mstar == 0:
return None
# below we need to force conversion to np.float64 before summing
# up particles to avoid overflow
ekin_star = self.mass_star * ((self.vel_star - self.vcom_star) ** 2).sum(axis=1)
ekin_star = unyt.unyt_array(
ekin_star.value, dtype=np.float64, units=ekin_star.units
)
return 0.5 * ekin_star.sum()
@lazy_property
def baryon_mass_fraction(self):
if self.Mbaryons == 0:
return None
return self.mass_baryons / self.Mbaryons
@lazy_property
def vcom_bar(self):
if self.Mbaryons == 0:
return None
return (self.baryon_mass_fraction[:, None] * self.vel_baryons).sum(axis=0)
def compute_Lbar_props(self):
(
self.internal_Lbar,
self.internal_kappa_bar,
) = get_angular_momentum_and_kappa_corot(
self.mass_baryons,
self.pos_baryons,
self.vel_baryons,
ref_velocity=self.vcom_bar,
)
@lazy_property
def Lbaryons(self):
if self.Mbaryons == 0:
return None
if not hasattr(self, "internal_Lbar"):
self.compute_Lbar_props()
return self.internal_Lbar
@lazy_property
def kappa_corot_baryons(self):
if self.Mbaryons == 0:
return None
if not hasattr(self, "internal_kappa_bar"):
self.compute_Lbar_props()
return self.internal_kappa_bar
@lazy_property
def BaryonAxisLengths(self):
if self.Mbaryons == 0:
return None
return get_axis_lengths(self.mass_baryons, self.pos_baryons)
@lazy_property
def gas_mask_all(self):
if self.Ngas == 0:
return None
if self.inclusive:
return np.ones(self.data["PartType0"]["GroupNr_bound"].shape, dtype=bool)
else:
return self.data["PartType0"]["GroupNr_bound"] == self.index
@lazy_property
def gas_SFR(self):
if self.Ngas == 0:
return None
raw_SFR = self.data["PartType0"]["StarFormationRates"][self.gas_mask_all][
self.gas_mask_ap
]
# Negative SFR are not SFR at all!
raw_SFR[raw_SFR < 0] = 0
return raw_SFR
@lazy_property
def is_SFR(self):
if self.Ngas == 0:
return None
return self.gas_SFR > 0
@lazy_property
def SFR(self):
if self.Ngas == 0:
return None
return self.gas_SFR.sum()
@lazy_property
def Mgas_SF(self):
if self.Ngas == 0:
return None
return self.mass_gas[self.is_SFR].sum()
@lazy_property
def gas_Mgasmetal(self):
if self.Ngas == 0:
return None
return (
self.mass_gas
* self.data["PartType0"]["MetalMassFractions"][self.gas_mask_all][
self.gas_mask_ap
]
)
@lazy_property
def gasmetalfrac_SF(self):
if self.Ngas == 0 or self.Mgas_SF == 0.0:
return None
return self.gas_Mgasmetal[self.is_SFR].sum() / self.Mgas_SF
@lazy_property
def gasmetalfrac(self):
if self.Ngas == 0:
return None
return self.gas_Mgasmetal.sum() / self.Mgas
@lazy_property
def gas_MgasO(self):
if self.Ngas == 0:
return None
return (
self.mass_gas
* self.data["PartType0"]["SmoothedElementMassFractions"][self.gas_mask_all][
self.gas_mask_ap
][:, indexO]
)
@lazy_property
def gasOfrac_SF(self):
if self.Ngas == 0 or self.Mgas_SF == 0.0:
return None
return self.gas_MgasO[self.is_SFR].sum() / self.Mgas_SF
@lazy_property
def gasOfrac(self):
if self.Ngas == 0:
return None
return self.gas_MgasO.sum() / self.Mgas
@lazy_property
def gas_MgasFe(self):
if self.Ngas == 0:
return None
return (
self.mass_gas
* self.data["PartType0"]["SmoothedElementMassFractions"][self.gas_mask_all][
self.gas_mask_ap
][:, indexFe]
)
@lazy_property
def gasFefrac_SF(self):
if self.Ngas == 0 or self.Mgas_SF == 0.0:
return None
return self.gas_MgasFe[self.is_SFR].sum() / self.Mgas_SF
@lazy_property
def gasFefrac(self):
if self.Ngas == 0:
return None
return self.gas_MgasFe.sum() / self.Mgas
@lazy_property
def gas_temp(self):
if self.Ngas == 0:
return None
return self.data["PartType0"]["Temperatures"][self.gas_mask_all][
self.gas_mask_ap
]
@lazy_property
def gas_no_agn(self):
if self.Ngas == 0:
return None
last_agn_gas = self.data["PartType0"]["LastAGNFeedbackScaleFactors"][
self.gas_mask_all
][self.gas_mask_ap]
return ~self.recently_heated_gas_filter.is_recently_heated(
last_agn_gas, self.gas_temp
)
@lazy_property
def Tgas(self):
if self.Mgas == 0 or self.Ngas == 0:
return None
return (self.gas_mass_fraction * self.gas_temp).sum()
@lazy_property
def Tgas_no_agn(self):
if self.Ngas == 0:
return None
if np.any(self.gas_no_agn):
mass_gas_no_agn = self.mass_gas[self.gas_no_agn]
Mgas_no_agn = mass_gas_no_agn.sum()
if Mgas_no_agn > 0:
return (
(mass_gas_no_agn / Mgas_no_agn) * self.gas_temp[self.gas_no_agn]
).sum()
return None
@lazy_property
def HalfMassRadiusGas(self):
return get_half_mass_radius(
self.radius[self.type == "PartType0"], self.mass_gas, self.Mgas
)
@lazy_property
def HalfMassRadiusDM(self):
return get_half_mass_radius(
self.radius[self.type == "PartType1"], self.mass_dm, self.Mdm
)
@lazy_property
def HalfMassRadiusStar(self):
return get_half_mass_radius(
self.radius[self.type == "PartType4"], self.mass_star, self.Mstar
)
@lazy_property
def HalfMassRadiusBaryon(self):
return get_half_mass_radius(
self.radius[(self.type == "PartType0") | (self.type == "PartType4")],
self.mass_baryons,
self.Mbaryons,
)
class ApertureProperties(HaloProperty):
"""
Compute aperture properties for halos.
The aperture has a fixed radius and optionally only includes particles that
are bound to the halo.
"""
# List of particle properties we need to read in
particle_properties = {
"PartType0": [
"Coordinates",
"GroupNr_bound",
"LastAGNFeedbackScaleFactors",
"Masses",
"MetalMassFractions",
"SmoothedElementMassFractions",
"StarFormationRates",
"Temperatures",
"Velocities",
],
"PartType1": ["Coordinates", "GroupNr_bound", "Masses", "Velocities"],
"PartType4": [
"BirthScaleFactors",
"Coordinates",
"GroupNr_bound",
"InitialMasses",
"Luminosities",
"Masses",
"MetalMassFractions",
"SmoothedElementMassFractions",
"Velocities",
],
"PartType5": [
"AccretionRates",
"Coordinates",
"DynamicalMasses",
"GroupNr_bound",
"LastAGNFeedbackScaleFactors",
"ParticleIDs",
"SubgridMasses",
"Velocities",
],
}
# get the properties we want from the table
property_list = [
(prop, *PropertyTable.full_property_list[prop])
for prop in [
"Mtot",
"Mgas",
"Mdm",
"Mstar",
"Mstar_init",
"Mbh_dynamical",
"Mbh_subgrid",
"Ngas",
"Ndm",
"Nstar",
"Nbh",
"BHlasteventa",
"BHmaxM",
"BHmaxID",
"BHmaxpos",
"BHmaxvel",
"BHmaxAR",
"BHmaxlasteventa",
"com",
"vcom",
"Lgas",
"Ldm",
"Lstar",
"kappa_corot_gas",
"kappa_corot_star",
"Lbaryons",
"kappa_corot_baryons",
# temporarily (?) disabled
# "veldisp_matrix_gas",
# "veldisp_matrix_dm",
# "veldisp_matrix_star",
"Ekin_gas",
"Ekin_star",
"Mgas_SF",
"gasmetalfrac",
"gasmetalfrac_SF",
"gasOfrac",
"gasOfrac_SF",
"gasFefrac",
"gasFefrac_SF",
"Tgas",
"Tgas_no_agn",
"SFR",
"StellarLuminosity",
"starmetalfrac",
"HalfMassRadiusGas",
"HalfMassRadiusDM",
"HalfMassRadiusStar",
"HalfMassRadiusBaryon",
"spin_parameter",
"GasAxisLengths",
"DMAxisLengths",
"StellarAxisLengths",
"BaryonAxisLengths",
"DtoTgas",
"DtoTstar",
"starOfrac",
"starFefrac",
"stellar_age_mw",
"stellar_age_lw",
]
]
def __init__(
self,
cellgrid,
physical_radius_kpc,
recently_heated_gas_filter,
stellar_age_calculator,
category_filter,
inclusive=False,
):
"""
Construct an ApertureProperties object with the given physical
radius (in Mpc) that uses the given filter to filter out recently
heated gas particles.
"""
super().__init__(cellgrid)
self.filter = recently_heated_gas_filter
self.stellar_ages = stellar_age_calculator
self.category_filter = category_filter
# no density criterion for these properties
self.mean_density_multiple = None
self.critical_density_multiple = None
# Minimum physical radius to read in (pMpc)
self.physical_radius_mpc = 0.001 * physical_radius_kpc
self.inclusive = inclusive
if self.inclusive:
self.name = f"inclusive_sphere_{physical_radius_kpc:.0f}kpc"
else:
self.name = f"exclusive_sphere_{physical_radius_kpc:.0f}kpc"
def calculate(self, input_halo, search_radius, data, halo_result):
"""
Compute centre of mass etc of bound particles
input_halo - dict with halo properties passed in from VR (see
halo_centres.py)
data - contains particle data. E.g. data["PartType1"]["Coordinates"]
has the particle coordinates for type 1
halo_result - dict with halo properties computed so far. Properties
computed here should be added to halo_result.
Input particle data arrays are unyt_arrays.
"""
types_present = [type for type in self.particle_properties if type in data]
part_props = ApertureParticleData(
input_halo,
data,
types_present,
self.inclusive,
self.physical_radius_mpc * unyt.Mpc,
self.stellar_ages,
self.filter,
)
do_calculation = self.category_filter.get_filters(halo_result)
aperture_sphere = {}
# declare all the variables we will compute
# we set them to 0 in case a particular variable cannot be computed
# all variables are defined with physical units and an appropriate dtype
# we need to use the custom unit registry so that everything can be converted
# back to snapshot units in the end
registry = part_props.mass.units.registry
for prop in self.property_list:
# skip non-DMO properties in DMO run mode
is_dmo = prop[8]
if do_calculation["DMO"] and not is_dmo:
continue
name = prop[0]
shape = prop[2]
dtype = prop[3]
unit = prop[4]
category = prop[6]
if shape > 1:
val = [0] * shape
else:
val = 0
aperture_sphere[name] = unyt.unyt_array(
val, dtype=dtype, units=unit, registry=registry
)
if do_calculation[category]:
val = getattr(part_props, name)
if val is not None:
assert aperture_sphere[name].shape == val.shape, f"Attempting to store {name} with wrong dimensions"
if unit == "dimensionless":
aperture_sphere[name] = unyt.unyt_array(
val.astype(dtype),
dtype=dtype,
units=unit,