-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcombine_chunks.py
103 lines (86 loc) · 4.45 KB
/
combine_chunks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/bin/env python
import numpy as np
import h5py
import virgo.mpi.parallel_hdf5 as phdf5
import virgo.mpi.parallel_sort as psort
import swift_units
from mpi_timer import MPITimer
def sub_snapnum(filename, snapnum):
"""
Substitute the snapshot number into a filename format string
without substituting the file number.
"""
filename = filename.replace("%(file_nr)", "%%(file_nr)")
return filename % {"snap_nr": snapnum}
def combine_chunks(args, cellgrid, halo_prop_list, scratch_file_format,
ref_metadata, nr_chunks, comm_world, category_filter, recently_heated_gas_filter):
"""
Combine the per-chunk output files into a single, sorted output
"""
# Open the per-chunk scratch files
scratch_file = phdf5.MultiFile(
scratch_file_format, file_idx=range(nr_chunks), comm=comm_world
)
# Read the VR halo IDs from the scratch files and make a sorting index to put them in order
with MPITimer("Establishing ID ordering of halos", comm_world):
vr_id = scratch_file.read(("VR/ID",))["VR/ID"]
order = psort.parallel_sort(vr_id, return_index=True, comm=comm_world)
del vr_id
# Determine total number of halos
total_nr_halos = comm_world.allreduce(len(order))
# First MPI rank sets up the output file
with MPITimer("Creating output file", comm_world):
output_file = sub_snapnum(args.output_file, args.snapshot_nr)
if comm_world.Get_rank() == 0:
# Create the file
outfile = h5py.File(output_file, "w")
# Write parameters etc
cellgrid.write_metadata(outfile.create_group("SWIFT"))
params = outfile.create_group("Parameters")
params.attrs["swift_filename"] = args.swift_filename
params.attrs["vr_basename"] = args.vr_basename
params.attrs["snapshot_nr"] = args.snapshot_nr
params.attrs["centrals_only"] = 0 if args.centrals_only == False else 1
calc_names = sorted([hp.name for hp in halo_prop_list])
params.attrs["calculations"] = calc_names
params.attrs["halo_ids"] = (
args.halo_ids if args.halo_ids is not None else np.ndarray(0, dtype=int)
)
recently_heated_gas_metadata = recently_heated_gas_filter.get_metadata()
recently_heated_gas_params = outfile.create_group("RecentlyHeatedGasFilter")
for at, val in recently_heated_gas_metadata.items():
recently_heated_gas_params.attrs[at] = val
# Create datasets for all halo properties
for name, size, unit, dtype, description in ref_metadata:
shape = (total_nr_halos,) + size
dataset = outfile.create_dataset(name, shape=shape, dtype=dtype, fillvalue=None)
# Add units and description
attrs = swift_units.attributes_from_units(unit)
attrs["Description"] = description
mask_metadata = category_filter.get_filter_metadata(name)
attrs.update(mask_metadata)
compression_metadata = category_filter.get_compression_metadata(name)
attrs.update(compression_metadata)
for attr_name, attr_value in attrs.items():
dataset.attrs[attr_name] = attr_value
outfile.close()
comm_world.barrier()
# Reopen the output file in parallel mode
outfile = h5py.File(output_file, "r+", driver="mpio", comm=comm_world)
with MPITimer("Writing output properties", comm_world):
# Loop over halo properties, a few at a time
total_nr_props = len(ref_metadata)
props_per_iteration = min(total_nr_props, 100) # TODO: how to choose this number?
for i1 in range(0, total_nr_props, props_per_iteration):
i2 = min(i1 + props_per_iteration, total_nr_props)
# Find the properties to reorder on this iteration
names, sizes, units, dtypes, descriptions = zip(*ref_metadata[i1:i2])
# Read in and reorder the properties
data = scratch_file.read(names)
for name in names:
data[name] = psort.fetch_elements(data[name], order, comm=comm_world)
# Write these properties to the output file
for name, size, unit, description in zip(names, sizes, units, descriptions):
phdf5.collective_write(outfile, name, data[name], create_dataset=False, comm=comm_world)
del data
outfile.close()