-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprojected_aperture_properties.py
710 lines (609 loc) · 22.2 KB
/
projected_aperture_properties.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
##!/bin/env python
import numpy as np
import unyt
from halo_properties import HaloProperty
from dataset_names import mass_dataset
from half_mass_radius import get_half_mass_radius
from property_table import PropertyTable
from kinematic_properties import get_projected_axis_lengths
from lazy_properties import lazy_property
from category_filter import CategoryFilter
class ProjectedApertureParticleData:
def __init__(
self,
input_halo,
data,
types_present,
aperture_radius,
):
self.input_halo = input_halo
self.data = data
self.types_present = types_present
self.aperture_radius = aperture_radius
self.compute_basics()
def compute_basics(self):
self.centre = self.input_halo["cofp"]
self.index = self.input_halo["index"]
mass = []
position = []
radius_projx = []
radius_projy = []
radius_projz = []
velocity = []
types = []
for ptype in self.types_present:
grnr = self.data[ptype]["GroupNr_bound"]
in_halo = grnr == self.index
mass.append(self.data[ptype][mass_dataset(ptype)][in_halo])
pos = self.data[ptype]["Coordinates"][in_halo, :] - self.centre[None, :]
position.append(pos)
rprojx = np.sqrt(pos[:, 1] ** 2 + pos[:, 2] ** 2)
radius_projx.append(rprojx)
rprojy = np.sqrt(pos[:, 0] ** 2 + pos[:, 2] ** 2)
radius_projy.append(rprojy)
rprojz = np.sqrt(pos[:, 0] ** 2 + pos[:, 1] ** 2)
radius_projz.append(rprojz)
velocity.append(self.data[ptype]["Velocities"][in_halo, :])
typearr = np.zeros(rprojx.shape, dtype="U9")
typearr[:] = ptype
types.append(typearr)
self.mass = unyt.array.uconcatenate(mass)
self.position = unyt.array.uconcatenate(position)
self.radius_projx = unyt.array.uconcatenate(radius_projx)
self.radius_projy = unyt.array.uconcatenate(radius_projy)
self.radius_projz = unyt.array.uconcatenate(radius_projz)
self.velocity = unyt.array.uconcatenate(velocity)
self.types = np.concatenate(types)
self.mask_projx = self.radius_projx <= self.aperture_radius
self.mask_projy = self.radius_projy <= self.aperture_radius
self.mask_projz = self.radius_projz <= self.aperture_radius
class SingleProjectionProjectedApertureParticleData:
def __init__(self, part_props, projection):
self.data = part_props.data
self.index = part_props.index
self.centre = part_props.centre
self.types = part_props.types
self.iproj = {"projx": 0, "projy": 1, "projz": 2}[projection]
self.projmask = getattr(part_props, f"mask_{projection}")
self.projr = getattr(part_props, f"radius_{projection}")
self.proj_mass = part_props.mass[self.projmask]
self.proj_position = part_props.position[self.projmask]
self.proj_velocity = part_props.velocity[self.projmask]
self.proj_radius = self.projr[self.projmask]
self.proj_type = part_props.types[self.projmask]
@lazy_property
def gas_mask_ap(self):
return self.projmask[self.types == "PartType0"]
@lazy_property
def dm_mask_ap(self):
return self.projmask[self.types == "PartType1"]
@lazy_property
def star_mask_ap(self):
return self.projmask[self.types == "PartType4"]
@lazy_property
def bh_mask_ap(self):
return self.projmask[self.types == "PartType5"]
@lazy_property
def baryon_mask_ap(self):
return self.projmask[(self.types == "PartType0") | (self.types == "PartType4")]
@lazy_property
def Ngas(self):
return self.gas_mask_ap.sum()
@lazy_property
def Ndm(self):
return self.dm_mask_ap.sum()
@lazy_property
def Nstar(self):
return self.star_mask_ap.sum()
@lazy_property
def Nbh(self):
return self.bh_mask_ap.sum()
@lazy_property
def proj_mass_gas(self):
return self.proj_mass[self.proj_type == "PartType0"]
@lazy_property
def proj_mass_dm(self):
return self.proj_mass[self.proj_type == "PartType1"]
@lazy_property
def proj_mass_star(self):
return self.proj_mass[self.proj_type == "PartType4"]
@lazy_property
def proj_mass_baryons(self):
return self.proj_mass[
(self.proj_type == "PartType0") | (self.proj_type == "PartType4")
]
@lazy_property
def proj_pos_gas(self):
return self.proj_position[self.proj_type == "PartType0"]
@lazy_property
def proj_pos_dm(self):
return self.proj_position[self.proj_type == "PartType1"]
@lazy_property
def proj_pos_star(self):
return self.proj_position[self.proj_type == "PartType4"]
@lazy_property
def proj_pos_baryons(self):
return self.proj_position[
(self.proj_type == "PartType0") | (self.proj_type == "PartType4")
]
@lazy_property
def Mtot(self):
return self.proj_mass.sum()
@lazy_property
def Mgas(self):
return self.proj_mass_gas.sum()
@lazy_property
def Mdm(self):
return self.proj_mass_dm.sum()
@lazy_property
def Mstar(self):
return self.proj_mass_star.sum()
@lazy_property
def Mbh_dynamical(self):
return self.proj_mass[self.proj_type == "PartType5"].sum()
@lazy_property
def Mbaryons(self):
return self.proj_mass_baryons.sum()
@lazy_property
def star_mask_all(self):
if self.Nstar == 0:
return None
return self.data["PartType4"]["GroupNr_bound"] == self.index
@lazy_property
def Mstar_init(self):
if self.Nstar == 0:
return None
return self.data["PartType4"]["InitialMasses"][self.star_mask_all][
self.star_mask_ap
].sum()
@lazy_property
def stellar_luminosities(self):
if self.Nstar == 0:
return None
return self.data["PartType4"]["Luminosities"][self.star_mask_all][
self.star_mask_ap
]
@lazy_property
def StellarLuminosity(self):
if self.Nstar == 0:
return None
return self.stellar_luminosities.sum(axis=0)
@lazy_property
def bh_mask_all(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["GroupNr_bound"] == self.index
@lazy_property
def Mbh_subgrid(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["SubgridMasses"][self.bh_mask_all][
self.bh_mask_ap
].sum()
@lazy_property
def agn_eventa(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["LastAGNFeedbackScaleFactors"][self.bh_mask_all][
self.bh_mask_ap
]
@lazy_property
def BHlasteventa(self):
if self.Nbh == 0:
return None
return np.max(self.agn_eventa)
@lazy_property
def iBHmax(self):
if self.Nbh == 0:
return None
return np.argmax(
self.data["PartType5"]["SubgridMasses"][self.bh_mask_all][self.bh_mask_ap]
)
@lazy_property
def BHmaxM(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["SubgridMasses"][self.bh_mask_all][
self.bh_mask_ap
][self.iBHmax]
@lazy_property
def BHmaxID(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["ParticleIDs"][self.bh_mask_all][self.bh_mask_ap][
self.iBHmax
]
@lazy_property
def BHmaxpos(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["Coordinates"][self.bh_mask_all][self.bh_mask_ap][
self.iBHmax
]
@lazy_property
def BHmaxvel(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["Velocities"][self.bh_mask_all][self.bh_mask_ap][
self.iBHmax
]
@lazy_property
def BHmaxAR(self):
if self.Nbh == 0:
return None
return self.data["PartType5"]["AccretionRates"][self.bh_mask_all][
self.bh_mask_ap
][self.iBHmax]
@lazy_property
def BHmaxlasteventa(self):
if self.Nbh == 0:
return None
return self.agn_eventa[self.iBHmax]
@lazy_property
def mass_fraction(self):
if self.Mtot == 0:
return None
return self.proj_mass / self.Mtot
@lazy_property
def com(self):
if self.Mtot == 0:
return None
return (self.mass_fraction[:, None] * self.proj_position).sum(
axis=0
) + self.centre
@lazy_property
def vcom(self):
if self.Mtot == 0:
return None
return (self.mass_fraction[:, None] * self.proj_velocity).sum(axis=0)
@lazy_property
def gas_mass_fraction(self):
if self.Mgas == 0:
return None
return self.proj_mass_gas / self.Mgas
@lazy_property
def proj_veldisp_gas(self):
if self.Mgas == 0:
return None
proj_vgas = self.proj_velocity[self.proj_type == "PartType0", self.iproj]
vcom_gas = (self.gas_mass_fraction * proj_vgas).sum()
return np.sqrt((self.gas_mass_fraction * (proj_vgas - vcom_gas) ** 2).sum())
@lazy_property
def ProjectedGasAxisLengths(self):
if self.Mgas == 0:
return None
return get_projected_axis_lengths(
self.proj_mass_gas, self.proj_pos_gas, self.iproj
)
@lazy_property
def dm_mass_fraction(self):
if self.Mdm == 0:
return None
return self.proj_mass_dm / self.Mdm
@lazy_property
def proj_veldisp_dm(self):
if self.Mdm == 0:
return None
proj_vdm = self.proj_velocity[self.proj_type == "PartType1", self.iproj]
vcom_dm = (self.dm_mass_fraction * proj_vdm).sum()
return np.sqrt((self.dm_mass_fraction * (proj_vdm - vcom_dm) ** 2).sum())
@lazy_property
def star_mass_fraction(self):
if self.Mstar == 0:
return None
return self.proj_mass_star / self.Mstar
@lazy_property
def proj_veldisp_star(self):
if self.Mstar == 0:
return None
proj_vstar = self.proj_velocity[self.proj_type == "PartType4", self.iproj]
vcom_star = (self.star_mass_fraction * proj_vstar).sum()
return np.sqrt((self.star_mass_fraction * (proj_vstar - vcom_star) ** 2).sum())
@lazy_property
def ProjectedStellarAxisLengths(self):
if self.Mstar == 0:
return None
return get_projected_axis_lengths(
self.proj_mass_star, self.proj_pos_star, self.iproj
)
@lazy_property
def ProjectedBaryonAxisLengths(self):
if self.Mbaryons == 0:
return None
return get_projected_axis_lengths(
self.proj_mass_baryons, self.proj_pos_baryons, self.iproj
)
@lazy_property
def gas_mask_all(self):
if self.Ngas == 0:
return None
return self.data["PartType0"]["GroupNr_bound"] == self.index
@lazy_property
def gas_SFR(self):
if self.Ngas == 0:
return None
raw_SFR = self.data["PartType0"]["StarFormationRates"][self.gas_mask_all][
self.gas_mask_ap
]
# Negative SFR are not SFR at all!
raw_SFR[raw_SFR < 0] = 0
return raw_SFR
@lazy_property
def SFR(self):
if self.Ngas == 0:
return None
return self.gas_SFR.sum()
@lazy_property
def HalfMassRadiusGas(self):
return get_half_mass_radius(
self.proj_radius[self.proj_type == "PartType0"],
self.proj_mass_gas,
self.Mgas,
)
@lazy_property
def HalfMassRadiusDM(self):
return get_half_mass_radius(
self.proj_radius[self.proj_type == "PartType1"], self.proj_mass_dm, self.Mdm
)
@lazy_property
def HalfMassRadiusStar(self):
return get_half_mass_radius(
self.proj_radius[self.proj_type == "PartType4"],
self.proj_mass_star,
self.Mstar,
)
@lazy_property
def HalfMassRadiusBaryon(self):
return get_half_mass_radius(
self.proj_radius[
(self.proj_type == "PartType0") | (self.proj_type == "PartType4")
],
self.proj_mass_baryons,
self.Mbaryons,
)
class ProjectedApertureProperties(HaloProperty):
"""
Calculate projected aperture properties.
These contain all particles bound to a halo. For projections along the three
principal coordinate axes, all particles within a given fixed aperture
radius are used. The depth of the projection is always the full extent of
the halo along the projection axis.
"""
# get the properties we want from the table
property_list = [
(prop, *PropertyTable.full_property_list[prop])
for prop in [
"Mtot",
"Mgas",
"Mdm",
"Mstar",
"Mstar_init",
"Mbh_dynamical",
"Mbh_subgrid",
"Ngas",
"Ndm",
"Nstar",
"Nbh",
"com",
"vcom",
"SFR",
"StellarLuminosity",
"HalfMassRadiusGas",
"HalfMassRadiusDM",
"HalfMassRadiusStar",
"HalfMassRadiusBaryon",
"proj_veldisp_gas",
"proj_veldisp_dm",
"proj_veldisp_star",
"BHmaxM",
"BHmaxID",
"BHmaxpos",
"BHmaxvel",
"BHlasteventa",
"BHmaxlasteventa",
"ProjectedGasAxisLengths",
"ProjectedStellarAxisLengths",
"ProjectedBaryonAxisLengths",
]
]
# Particle properties that are used
particle_properties = {
"PartType0": [
"Coordinates",
"GroupNr_bound",
"Masses",
"StarFormationRates",
"Velocities",
],
"PartType1": ["Coordinates", "GroupNr_bound", "Masses", "Velocities"],
"PartType4": [
"Coordinates",
"GroupNr_bound",
"InitialMasses",
"Luminosities",
"Masses",
"Velocities",
],
"PartType5": [
"Coordinates",
"DynamicalMasses",
"GroupNr_bound",
"LastAGNFeedbackScaleFactors",
"ParticleIDs",
"SubgridMasses",
"Velocities",
],
}
def __init__(self, cellgrid, physical_radius_kpc, category_filter):
super().__init__(cellgrid)
# No density criterion
self.mean_density_multiple = None
self.critical_density_multiple = None
# Minimum physical radius to read in (pMpc)
self.physical_radius_mpc = 0.001 * physical_radius_kpc
self.category_filter = category_filter
self.name = f"projected_aperture_{physical_radius_kpc:.0f}kpc"
def calculate(self, input_halo, search_radius, data, halo_result):
"""
Compute centre of mass etc of bound particles
input_halo - dict with halo properties passed in from VR (see
halo_centres.py)
data - contains particle data. E.g. data["PartType1"]["Coordinates"]
has the particle coordinates for type 1
halo_result - dict with halo properties computed so far. Properties
computed here should be added to halo_result.
Input particle data arrays are unyt_arrays.
"""
types_present = [type for type in self.particle_properties if type in data]
part_props = ProjectedApertureParticleData(
input_halo,
data,
types_present,
self.physical_radius_mpc * unyt.Mpc,
)
do_calculation = self.category_filter.get_filters(halo_result)
registry = part_props.mass.units.registry
for projname in ["projx", "projy", "projz"]:
proj_part_props = SingleProjectionProjectedApertureParticleData(
part_props, projname
)
projected_aperture = {}
# declare all the variables we will compute
# we set them to 0 in case a particular variable cannot be computed
# all variables are defined with physical units and an appropriate dtype
# we need to use the custom unit registry so that everything can be converted
# back to snapshot units in the end
for prop in self.property_list:
# skip non-DMO properties in DMO run mode
is_dmo = prop[8]
if do_calculation["DMO"] and not is_dmo:
continue
name = prop[0]
shape = prop[2]
dtype = prop[3]
unit = prop[4]
category = prop[6]
if shape > 1:
val = [0] * shape
else:
val = 0
projected_aperture[name] = unyt.unyt_array(
val, dtype=dtype, units=unit, registry=registry
)
if do_calculation[category]:
val = getattr(proj_part_props, name)
if val is not None:
assert projected_aperture[name].shape == val.shape, f"Attempting to store {name} with wrong dimensions"
if unit == "dimensionless":
projected_aperture[name] = unyt.unyt_array(
val.astype(dtype),
dtype=dtype,
units=unit,
registry=registry,
)
else:
projected_aperture[name] += val
prefix = (
f"ProjectedAperture/{self.physical_radius_mpc*1000.:.0f}kpc/{projname}"
)
for prop in self.property_list:
# skip non-DMO properties in DMO run mode
is_dmo = prop[8]
if do_calculation["DMO"] and not is_dmo:
continue
name = prop[0]
outputname = prop[1]
description = prop[5]
halo_result.update(
{f"{prefix}/{outputname}": (projected_aperture[name], description)}
)
return
def test_projected_aperture_properties():
"""
Unit test for the projected aperture calculation.
Generates 100 random halos and passes them on to
ProjectedApertureProperties::calculate().
Tests that all expected return values are computed and have the right size,
dtype and units.
"""
from dummy_halo_generator import DummyHaloGenerator
dummy_halos = DummyHaloGenerator(127)
category_filter = CategoryFilter()
property_calculator = ProjectedApertureProperties(
dummy_halos.get_cell_grid(), 30.0, category_filter
)
for i in range(100):
input_halo, data, _, _, _, particle_numbers = dummy_halos.get_random_halo(
[1, 10, 100, 1000, 10000]
)
halo_result_template = {
f"FOFSubhaloProperties/{PropertyTable.full_property_list['Ngas'][0]}": (
unyt.unyt_array(
particle_numbers["PartType0"],
dtype=PropertyTable.full_property_list["Ngas"][2],
units="dimensionless",
),
"Dummy Ngas for filter",
),
f"FOFSubhaloProperties/{PropertyTable.full_property_list['Ndm'][0]}": (
unyt.unyt_array(
particle_numbers["PartType1"],
dtype=PropertyTable.full_property_list["Ndm"][2],
units="dimensionless",
),
"Dummy Ndm for filter",
),
f"FOFSubhaloProperties/{PropertyTable.full_property_list['Nstar'][0]}": (
unyt.unyt_array(
particle_numbers["PartType4"],
dtype=PropertyTable.full_property_list["Nstar"][2],
units="dimensionless",
),
"Dummy Nstar for filter",
),
f"FOFSubhaloProperties/{PropertyTable.full_property_list['Nbh'][0]}": (
unyt.unyt_array(
particle_numbers["PartType5"],
dtype=PropertyTable.full_property_list["Nbh"][2],
units="dimensionless",
),
"Dummy Nbh for filter",
),
}
input_data = {}
for ptype in property_calculator.particle_properties:
if ptype in data:
input_data[ptype] = {}
for dset in property_calculator.particle_properties[ptype]:
input_data[ptype][dset] = data[ptype][dset]
input_halo_copy = input_halo.copy()
input_data_copy = input_data.copy()
halo_result = dict(halo_result_template)
property_calculator.calculate(
input_halo, 0.0 * unyt.kpc, input_data, halo_result
)
assert input_halo == input_halo_copy
assert input_data == input_data_copy
for proj in ["projx", "projy", "projz"]:
for prop in property_calculator.property_list:
outputname = prop[1]
size = prop[2]
dtype = prop[3]
unit_string = prop[4]
full_name = f"ProjectedAperture/30kpc/{proj}/{outputname}"
assert full_name in halo_result
result = halo_result[full_name][0]
assert (len(result.shape) == 0 and size == 1) or result.shape[0] == size
assert result.dtype == dtype
unit = unyt.Unit(unit_string)
assert result.units.same_dimensions_as(unit.units)
if __name__ == "__main__":
"""
Standalone mode: simply run the unit test.
Note that this can also be achieved by running
python3 -m pytest *.py
in the main folder.
"""
print("Calling test_projected_aperture_properties()...")
test_projected_aperture_properties()
print("Test passed.")