-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathexport_params.py
163 lines (155 loc) · 6.25 KB
/
export_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from __future__ import division
import caffe
import numpy as np
from sklearn.externals import joblib
BN_EPS = 1e-8
def get_caffenet(model_filename):
return caffe.Net(model_filename, caffe.TEST)
def load_weights(weights_filename):
return joblib.load(weights_filename)
def check_caffe_weights(weights):
# check that each caffe layer has 1 or 2 weights
# (the filters/weights and maybe a bias)
shapes = [tuple(w.shape) for w in weights]
assert len(shapes) in (1, 2)
assert 2 <= len(shapes[0]) <= 4
dim = shapes[0][0]
has_bias = (len(shapes) == 2)
group = {}
group['weight'] = weights[:1]
if len(shapes) == 2:
bias = shapes[1]
assert len(bias) == 1 and bias[0] == dim
group['shift'] = weights[1:]
return group
def check_theano_weights(weights):
# theano weights may have any of these structures:
# len(shapes) ==
# 1: (filters/weights)
# 2: (filters/weights, biases)
# 3: (filters/weights, gains, biases)
# 4: (filters/weights, BN count, BN mean, BN var)
# 5: (filters/weights, BN count, BN mean, BN var, biases)
# 6: (filters/weights, BN count, BN mean, BN var, gains, biases)
shapes = [w.shape for w in weights]
assert 1 <= len(shapes) <= 6
assert 2 <= len(shapes[0]) <= 4
if len(shapes[0]) == 4:
dim = shapes[0][0]
elif len(shapes[0]) == 2:
dim = shapes[0][1]
weights[0] = weights[0].T
else:
raise ValueError('Unknown ndims: %d' % len(shapes[0]))
group = {}
group['weight'] = weights[:1]
offset = 1
if len(shapes) >= 4:
# has BN
count, mean, var = shapes[1:4]
assert len(count) == 0
assert len(mean) == 1 and mean[0] == dim
assert len(var) == 1 and var[0] == dim
group['bn'] = weights[1:4]
offset = 4
if len(shapes) - offset >= 1:
bias = shapes[-1]
assert len(bias) == 1 and bias[0] == dim
group['shift'] = weights[-1:]
if len(shapes) - offset >= 2:
gain = shapes[-2]
assert len(gain) == 1 and gain[0] == dim
group['scale'] = weights[-2:-1]
return group
def transplant_weights(weights, caffenet, flip_filters=True, reverse_3ch=True):
weight_inds = [i for i, w in enumerate(weights) if len(w.shape) >= 2]
weights = [weights[start:end]
for start, end in zip([0] + weight_inds, weight_inds + [None])
if (end is None or end > start)]
weights_index = 0
mismatched = None
num_layers = 0
for (name, caffe_weights), theano_weights in \
zip(caffenet.params.items(), weights):
caffe_weights = check_caffe_weights(caffe_weights)
group = theano_weights = check_theano_weights(theano_weights)
if len(theano_weights) > 1 and len(caffe_weights) == 1:
print ('Layer "%s" did not match: '
'Theano had bias; Caffe layer had only weights') % name
mismatched = name
break
weights = caffe_weights['weight'][0]
source_weights = group['weight'][0]
if tuple(weights.shape) != source_weights.shape:
print ('Layer "%s" did not match: '
'weight.shape = %s != %s = source_weight.shape') \
% (name, tuple(weights.shape), source_weights.shape)
mismatched = name
break
source_params = caffenet.params[name]
scale = 1
if 'shift' in caffe_weights:
assert len(caffe_weights['shift']) == 1
shift = caffe_weights['shift'][0].data.copy()
else:
shift = 0
if 'bn' in group:
bn_params = group['bn']
assert len(bn_params) == 3
inv_scale_factor, mean, var = [p.copy() for p in bn_params]
mean, var = [p / inv_scale_factor for p in (mean, var)]
stdev = (var + BN_EPS) ** 0.5
scale /= stdev
shift -= mean
shift /= stdev
print "Merging BN into conv:", name
if 'scale' in group:
assert len(group['scale']) == 1
scale_param = group['scale'][0].copy()
scale *= scale_param
shift *= scale_param
print "Merging scale into conv:", name
if 'shift' in group:
assert len(group['shift']) == 1
shift += group['shift'][0].copy()
print "Merging shift into conv:", name
if isinstance(scale, np.ndarray):
weights.data[...] = (source_weights.T * scale).T
else:
print "Directly transplanting weights: %s" % name
assert scale == 1
weights.data[...] = source_weights[...]
if flip_filters and len(weights.shape) == 4:
weights.data[...] = weights.data[:, :, ::-1, ::-1]
if reverse_3ch and weights.shape[1] == 3:
print 'Reversing 3 channel inputs for weights:', name
weights.data[...] = weights.data[:, ::-1]
if isinstance(shift, np.ndarray):
assert 'shift' in caffe_weights, 'need bias'
bias = caffe_weights['shift'][0]
assert shift.shape == tuple(bias.shape)
bias.data[...] = shift[...]
if reverse_3ch and bias.data.shape[0] == 3:
print 'Reversing 3 channel output biases:', name
bias.data[...] = bias.data[::-1]
elif 'shift' in caffe_weights:
print "Zero initializing biases: %s" % name
caffe_weights['shift'][0].data[...] = 0
num_layers += 1
print 'Transplanted weights of %d layers' % num_layers
if mismatched is not None:
print 'Warning: mismatch starting at layer:', mismatched
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
description='Convert train_gan.py output to caffemodel')
parser.add_argument('model', help='(*.prototxt) Caffe model specification')
parser.add_argument('weights',
help='(*.jl) weights file saved by train_gan.py')
parser.add_argument('output', help='(*.caffemodel) output Caffe model file')
args = parser.parse_args()
weights = load_weights(args.weights)
caffenet = get_caffenet(args.model)
transplant_weights(weights, caffenet)
print 'Saving transplanted caffenet to:', args.output
caffenet.save(args.output)