-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathtrain_imagenet.sh
executable file
·32 lines (26 loc) · 1.06 KB
/
train_imagenet.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env bash
# Train on ImageNet with only 10 classes, by default
# (add "--max_labels 1000" to use the full dataset).
NOISE="u-200" # feature/noise (z) distribution is a 200-D uniform
# BiGAN objective
OBJECTIVE="--encode_gen_weight 1 --encode_weight 0 --discrim_weight 0 --joint_discrim_weight 1"
# Latent Regressor (LR) objective
# OBJECTIVE="--encode_gen_weight 0 --encode_weight 1 --discrim_weight 1 --joint_discrim_weight 0"
# Joint Latent Regressor (Joint LR) objective
# OBJECTIVE="--encode_gen_weight 0.25 --encode_weight 1 --discrim_weight 1 --joint_discrim_weight 0"
python train_gan.py \
--encode --encode_normalize \
--dataset imagenet --raw_size 72 --crop_size 64 \
--gen_net_size 64 \
--feat_net_size 64 \
--encode_net alexnet_group_padpool \
--megabatch_gb 0.5 \
--classifier --classifier_deploy \
--nolog_gain --no_decay_gain \
--deploy_iters 1000 \
--disp_samples 400 \
--max_labels 10 --epochs 200 --decay_epochs 200 \
--disp_interval 25 --save_interval 25 \
--noise ${NOISE} \
${OBJECTIVE} \
$@