-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathlens_modules.py
132 lines (104 loc) · 4.88 KB
/
lens_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import matplotlib.pyplot as plt
# We use some stuff we learned before
import cmb_modules
# We need to load the theory spectra
def get_theory():
ells, tt, _, _, pp, _ = np.loadtxt("CAMB_fiducial_cosmo_scalCls.dat", unpack=True)
TCMB2 = 7.4311e12
ckk = pp / 4.0 / TCMB2
ucltt = tt / ells / (ells + 1.0) * 2.0 * np.pi
ells2, lcltt = np.loadtxt("CMB_fiducial_totalCls.dat", unpack=True, usecols=[0, 1])
lcltt = lcltt / ells2 / (ells2 + 1.0) * 2.0 * np.pi
lcltt = lcltt[: len(ells)]
return ells, ucltt, lcltt, ckk
def get_lensed(patch_deg_width, pix_size, ells, ucltt, clkk):
# Number of pixels in each direction
N = int(patch_deg_width * 60.0 / pix_size)
# We next generate an unlensed CMB map as a Gaussian random field as we learned before
DlTT = ucltt * ells * (ells + 1.0) / 2.0 / np.pi
unlensed = cmb_modules.make_CMB_T_map(N, pix_size, ells, DlTT)
# We also need a lensing convergence (kappa) map
DlKK = clkk * ells * (ells + 1.0) / 2.0 / np.pi
kappa = cmb_modules.make_CMB_T_map(N, pix_size, ells, DlKK)
# We get the Fourier coordinates
ly, lx, modlmap = get_ells(N, pix_size)
# Now we can lens our input unlensed map
lensed = lens_map(unlensed, kappa, modlmap, ly, lx, N, pix_size)
return N, lensed, kappa, ly, lx, modlmap
def lens_map(imap, kappa, modlmap, ly, lx, N, pix_size):
# First we convert lensing convergence to lensing potential
phi = kappa_to_phi(kappa, modlmap, return_fphi=True)
# Then we take its gradient to get the deflection field
grad_phi = gradient(phi, ly, lx)
# Then we calculate the displaced positions by shifting the physical positions by the deflections
pos = posmap(N, pix_size) + grad_phi
# We convert the displaced positions into fractional displaced pixel numbers
# because scipy doesn't know about physical distances
pix = sky2pix(pos, N, pix_size)
# We prepare an empty output lensed map array
omap = np.empty(imap.shape, dtype=imap.dtype)
# We then tell scipy to calculate the values of the input lensed map
# at the displaced fractional positions by interpolation and grid that onto the final lensed map
from scipy.ndimage import map_coordinates
map_coordinates(imap, pix, omap, order=5, mode="wrap")
return omap
# This function needs to know about the Fourier coordinates of the map
def get_ells(N, pix_size):
# This function returns Fourier wavenumbers for a Cartesian square grid
N = int(N)
ones = np.ones(N)
inds = (np.arange(N) + 0.5 - N / 2.0) / (N - 1.0)
ell_scale_factor = 2.0 * np.pi
lx = np.outer(ones, inds) / (pix_size / 60.0 * np.pi / 180.0) * ell_scale_factor
ly = np.transpose(lx)
modlmap = np.sqrt(lx**2.0 + ly**2.0)
return ly, lx, modlmap
# We need to convert kappa to phi
def kappa_to_phi(kappa, modlmap, return_fphi=False):
return filter_map(kappa, kmask(2.0 / modlmap / (modlmap + 1.0), modlmap, ellmin=2))
# where we used a Fourier space masking function which will come in handy
def kmask(filter2d, modlmap, ellmin=None, ellmax=None):
# Apply a minimum and maximum multipole mask to a filter
if ellmin is not None:
filter2d[modlmap < ellmin] = 0
if ellmax is not None:
filter2d[modlmap > ellmax] = 0
return filter2d
# To do that we also need to know generally how to filter a map
def filter_map(Map, filter2d):
FMap = np.fft.fftshift(np.fft.fft2(Map))
FMap_filtered = FMap * filter2d
Map_filtered = np.real(np.fft.ifft2(np.fft.ifftshift(FMap_filtered)))
return Map_filtered
# We also need to calculate a gradient
# We do this in Fourier space
def gradient(imap, ly, lx):
# Filter the map by (i ly, i lx) to get gradient
return np.stack([filter_map(imap, ly * 1j), filter_map(imap, lx * 1j)])
# We also needed the map of physical positions
def posmap(N, pix_size):
pix = np.mgrid[:N, :N]
return pix2sky(pix, N, pix_size)
# For that we need to be able to convert pixel indices to sky positions
def pix2sky(pix, N, pix_size):
py, px = pix
dec = np.deg2rad((py - N // 2 - 0.5) * pix_size / 60.0)
ra = np.deg2rad((px - N // 2 - 0.5) * pix_size / 60.0)
return np.stack([dec, ra])
# Finally, for the lensing operation, we also needed to convert physical sky positions to pixel indices
# which is just the inverse of the above
def sky2pix(pos, N, pix_size):
dec, ra = np.rad2deg(pos) * 60.0
py = dec / pix_size + N // 2 + 0.5
px = ra / pix_size + N // 2 + 0.5
return np.stack([py, px])
def get_theory():
ells, tt, _, _, pp, _ = np.loadtxt("CAMB_fiducial_cosmo_scalCls_for_lensing.dat", unpack=True)
TCMB2 = 7.4311e12
ckk = pp / 4.0 / TCMB2
ucltt = tt / ells / (ells + 1.0) * 2.0 * np.pi
ells2, lcltt = np.loadtxt("CMB_fiducial_totalCls.dat", unpack=True, usecols=[0, 1])
lcltt = lcltt / ells2 / (ells2 + 1.0) * 2.0 * np.pi
lcltt = lcltt[: len(ells)]
return ells, ucltt, lcltt, ckk