-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBME280SensorMicrobit.py
163 lines (141 loc) · 6.35 KB
/
BME280SensorMicrobit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Bosch BME280 Pressure, Temperature and Humidity Sensor
# Language: BBC Microbit MicroPython
# Author: Terry Morris, based upon but substantially modified Bosch sample code BME280.c
# (C) 2015 - 2016 Bosch Sensortec GmbH and BOSCHBME280PythonDriver(Adafruit).py
# (c) Adafruit Industries (Tony DiCola)
# Communications: I2C-default address 0x77
# Mode: normal (continuous conversion)
# Read Temperature, Pressure and Humidity to maximum precision, standy 125ms
# No IRR filter
# Warning: this code demands memory allocation close to the Microbit's limits!
from microbit import i2c, running_time
# BME 280 system addresses and values
# Registers
IDRegister = 0xD0 # ID holds 0x60, always readable
RESET = 0xE0 # Reset only executed by writing 0xB6
CTRL_HUM = 0xF2 # Selects humidity measurement and oversampling
STATUS = 0xF3 # Indicates data availability
CTRL_MEAS = 0xF4 # Temperature, pressure oversampling, selects normal, forced or sleep mode
CONFIG = 0xF5 # Controls normal mode standby time, IRR filter, SPI mode
t_fine = 0
# Data structures
ConfigurationData = bytearray(6)
CalData00_25 = bytearray(25)
CalData00_25BaseAddress = bytearray(1)
CalData00_25BaseAddress[0] = 0x88
CalData26_41 = bytearray(7)
CalData26_41BaseAddress = bytearray(1)
CalData26_41BaseAddress[0] = 0xE1
RawSensorData = bytearray(8)
RawSensorDataBaseAddress = bytearray(1)
RawSensorDataBaseAddress[0] = 0xF7
# Functions
# BuildS16: construct signed integer from 2-byte data
def BuildS16(msb, lsb):
sval = ((msb << 8) | lsb)
if sval > 32767: # Largest positive value: 2**15 - 1
sval -= 65536
return sval
# BuildU16: construct unsigned integer from 2-byte data
def BuildU16(msb, lsb):
return ((msb << 8) |lsb)
# BuildS8: construct signed integer from a single byte
def BuildS8(b):
if b > 127:
return (b-256)
else:
return b
# Calculate Temperature in degrees Celsius
def CalculateTemperature(TRAW):
global t_fine
Traw = float(TRAW)
v1 = (Traw/ 16384.0 - float(dig_T1) / 1024.0) * float(dig_T2)
v2 = ((Traw / 131072.0 - float(dig_T1) / 8192.0) * (
Traw / 131072.0 - float(dig_T1) / 8192.0)) * float(dig_T3)
t_fine = int(v1 + v2)
T = (v1 + v2) / 5120.0
return T
# Calculate pressure in Pascals
def CalculatePressure(PRAW):
Praw = float(PRAW)
v1 = float(t_fine) / 2.0 - 64000.0
v2 = v1 * v1 * float(dig_P6) / 32768.0
v2 = v2 + v1 * float(dig_P5) * 2.0
v2 = v2 / 4.0 + float(dig_P4) * 65536.0
v1 = (float(dig_P3) * v1 * v1 / 524288.0 + float(dig_P2) * v1) / 524288.0
v1 = (1.0 + v1 / 32768.0) * float(dig_P1)
if v1 == 0:
return 0
p = 1048576.0 - Praw
p = ((p - v2 / 4096.0) * 6250.0) / v1
v1 = float(dig_P9) * p * p / 2147483648.0
v2 = p * float(dig_P8) / 32768.0
p = p + (v1 + v2 + float(dig_P7)) / 16.0
return p
# Calculate relative humidity
def CalculateHumidity(HRAW):
global t_fine
Hraw = float(HRAW)
h = float(t_fine) - 76800.0
h = (Hraw - (float(dig_H4) * 64.0 + float(dig_H5) / 16384.0 * h)) * (
float(dig_H2) / 65536.0 * (1.0 + float(dig_H6) / 67108864.0 * h * (
1.0 + float(dig_H3) / 67108864.0 * h)))
h = h * (1.0 - float(dig_H1) * h / 524288.0)
if h > 100:
h = 100
elif h < 0:
h = 0
return h
# Discover if the sensor is there
IDAddress = bytearray(1)
IDAddress[0] = IDRegister
i2c.write(0x77, IDAddress, repeat = False)
id = i2c.read(0x77, 1, repeat = False)
print(id)
# Read calibration data
i2c.write(0x77, CalData00_25BaseAddress, repeat = False) # Send base address
CalData00_25 = i2c.read(0x77, 25, repeat = False)
i2c.write(0x77, CalData26_41BaseAddress, repeat = False) # Send base address
CalData26_41 = i2c.read(0x77, 7, repeat = False)
#Assign calibration data variables
dig_T1 = BuildU16(CalData00_25[1], CalData00_25[0]) # unsigned short
dig_T2 = BuildS16(CalData00_25[3], CalData00_25[2]) # signed short
dig_T3 = BuildS16(CalData00_25[5], CalData00_25[4]) # signed short
dig_P1 = BuildU16(CalData00_25[7], CalData00_25[6]) # unsigned short
dig_P2 = BuildS16(CalData00_25[9], CalData00_25[8]) # signed short
dig_P3 = BuildS16(CalData00_25[11], CalData00_25[10]) # signed short
dig_P4 = BuildS16(CalData00_25[13], CalData00_25[12]) # signed short
dig_P5 = BuildS16(CalData00_25[15], CalData00_25[14]) # signed short
dig_P6 = BuildS16(CalData00_25[17], CalData00_25[16]) # signed short
dig_P7 = BuildS16(CalData00_25[19], CalData00_25[18]) # signed short
dig_P8 = BuildS16(CalData00_25[21], CalData00_25[20]) # signed short
dig_P9 = BuildS16(CalData00_25[23], CalData00_25[22]) # signed short
dig_H1 = CalData00_25[24] # unsigned char
dig_H2 = BuildS16(CalData26_41[1],CalData26_41[0])
dig_H3 = CalData26_41[2]
dig_H4 = (BuildS8(CalData26_41[3]) << 4) | (CalData26_41[4] & 0x0F) # signed short presented in 12 bits
dig_H5 = (BuildS8(CalData26_41[5]) << 4) | ((CalData26_41[4] >> 4) & 0x0F) # signed short presented in 12 bits
dig_H6 = BuildS8(CalData26_41[6]) # signed char
# Write configuration data
# Load array with register address - value pairs
ConfigurationData[0] = CTRL_HUM # Register address
ConfigurationData[1] = 0b00000101 # Hunidity sampling on: x16
ConfigurationData[2] = CTRL_MEAS # Register address
ConfigurationData[3] = 0b10110111 # Temperature and pressure x16, normal mode
ConfigurationData[4] = CONFIG # Register address
ConfigurationData[5] = 0b01000000 # Normal mode standby 125ms, IRR off, SPI irrelevant
i2c.write(0x77,ConfigurationData, repeat=False)
interval = running_time() + 500
for i in range(1,100):
i2c.write(0x77, RawSensorDataBaseAddress, repeat = False)
RawSensorData = i2c.read(0x77, 8, repeat = False)
PRAW = ((RawSensorData[0] << 16) | (RawSensorData[1] << 8) | RawSensorData[2]) >> 4
TRAW = ((RawSensorData[3] << 16) | (RawSensorData[4] << 8) | RawSensorData[5]) >> 4
HRAW = (RawSensorData[6] << 8) | RawSensorData[7]
print("T = {0:6.2f}C p = {1:5.1f}kPa H = {2:5.1f}".format(
CalculateTemperature(TRAW),
CalculatePressure(PRAW)/1000,
CalculateHumidity(HRAW)))
while(running_time() < interval):
pass
interval = running_time() + 500