-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathroboturk_loader_observations.py
213 lines (178 loc) · 8.84 KB
/
roboturk_loader_observations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.utils.data as data
import torch.nn as nn
import torch.optim as optim
import math
import numpy as np
from transformer import Transformer
import torchvision.transforms as transforms
import argparse
import cv2
import os
import glob
import copy
from torch.utils.data import DataLoader, RandomSampler
class RoboTurkObs(data.Dataset):
def __init__(self, num_frames=5, stride=1, dir='/media/jer/data/bouncing_ball_1000_1/test1_bouncing_ball', stage='raw', shuffle=True):
self.stage = stage
self.dir = os.path.join(dir, stage)
self.num_frames = num_frames
self.stride = stride
self.indices, self.dataset = self.get_data(shuffle=shuffle)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = Transformer()
# self.SOS_token = torch.ones((1, model.dim_model), dtype=torch.float32, device=device) * 2
# self.EOS_token = torch.ones((1, model.dim_model), dtype=torch.float32) * 3
test_X = np.concatenate((np.arange(0, 26) + 100, np.arange(0, 26) + 900))
test_y = np.concatenate((np.arange(22, 26) + 100, np.arange(22, 26) + 900))
self.mean_x = np.mean(test_X)
self.stdev_x = np.std(test_X)
self.mean_y = np.mean(test_y)
self.stdev_y = np.std(test_y)
def __getitem__(self, index):
# obtaining file paths
obs_names = self.dataset[index][0]
act_names = self.dataset[index][1]
# loading and formatting image
frames = []
# this is for loading observation spaces
# np.random.seed(0)
for obs in obs_names:
if (obs == 0):
dat = np.zeros(25)
else:
dat = np.load(obs)
# dat = np.load(obs, allow_pickle=True).item()
# dat = np.concatenate([x.flatten() for x in dat.values()])
# dat = np.arange(0, 26) + np.random.randint(0, 1000) # testing
# dat = np.arange(0, 26) + np.random.choice(np.array([100,900])) # testing
# dat = (dat - self.mean_x)/self.stdev_x
dat = torch.from_numpy(dat)
dat = dat.float()
frames.append(dat)
# this was for loading action spaces
# for frame in obs_names:
# frame = np.load(frame, allow_pickle=True)
# # frame = torch.from_numpy(frame)
# frame = torch.tensor(frame)
# frame = frame.float()
# frame = frame.flatten()
# frames.append(frame)
frames = torch.stack(frames, dim=0)
frames = frames.detach()
# frames = torch.diff(frames, dim=0)
frames.requires_grad = False
joints = np.load(act_names)
# joints = torch.mean(frames, dim=0)[-4:]
# joints = (joints - self.mean_y)/self.stdev_y
# joints = torch.from_numpy(joints)
joints = torch.tensor(joints)
joints = joints.float()
joints = joints.flatten()
# # concatenating SOS token,
# frames = torch.cat((self.SOS_token, frames), dim=0)
# frames.shape: (seq_len + 1, dim_model)
return {'data':frames, 'y':joints}
def __len__(self):
return len(self.dataset)
def get_data(self, shuffle):
obs_names = []
act_names = []
dataset = []
indices = []
# crawling the directory
# for dir in glob.glob(os.path.join(self.dir, '*/'), recursive=True):
# parent = os.path.split(os.path.split(dir)[0])[1]
# for file in glob.glob(os.path.join(dir, '*.jpg')):
# parent_index = parent.split('_')[-1]
# if parent_index != 'depth': # TODO: change this if we add depth
# obs_names.append((int(parent_index+file[-7:-4]), os.path.join(dir, file)))
# for file in glob.glob(os.path.join(dir, '*.npy')):
# parent_index = parent.split('_')[-2]
# act_names.append((int(parent_index+file[-7:-4]), os.path.join(dir, file)))
for dir, _, files in os.walk(self.dir):
if (len(files) == 0):
continue
for file in files:
parent = dir.split('/')[-1]
# (parent+index, name)
if ('observations' in parent):
parent_index = parent.split('_')[-1]
obs_names.append((int(parent_index+file[-9:-4]), os.path.join(dir, file)))
if ('actions' in parent):
parent_index = parent.split('_')[-1]
act_names.append((int(parent_index+file[-9:-4]), os.path.join(dir, file)))
# sorting the names numerically. first 4 digits are folder and last 3 are file
obs_names = sorted(obs_names, key=lambda x: x[0])
act_names = sorted(act_names, key=lambda x: x[0])
# indices = [x[0] for x in obs_names]
# # for i in range(0, len(obs_namesobs_anmes), self.num_frames): # for each sequence of frames
# for i in range(0, len(obs_names) - self.num_frames, self.num_frames): # for each sequence
# index_list = []
# frame_names = []
# joint_frame_names = []
# # for j in range(0, self.stride*(self.num_frames - 1) + 1, self.stride): # for each frame in the sequence
# for j in range(self.num_frames):
# index_list.append(obs_names[i+j][0]) # getting frame i, i+self.stride, i+2*self.stride, ...
# frame_names.append(obs_names[i+j][1])
# joint_frame_names.append(act_names[i+j][1])
for i in range(0, len(obs_names) - self.num_frames * self.stride - 1):
index_list = []
frame_names = []
for j in range(self.stride): # don't miss the skipped frames from the stride
if i % self.stride == j:
if (str(obs_names[i][0])[-5:] == '00000'):
self.append_sos(dataset, indices, obs_names, act_names, i)
for k in range(self.num_frames): # for each sequence
index_list.append(obs_names[i+k*self.stride][0]) # getting frame i, i+self.stride, i+2*self.stride, ... (i+1)+self.stride, (i+1)+2*self.stride, ... etc
frame_names.append(obs_names[i+k*self.stride][1])
if (not np.all(np.diff(index_list) == self.stride)):
# frames arent contiguous
# we cant use the last sequence in a video because we need a label for the seq+1 action
continue
# list of lists of frame indices
indices.append(index_list)
# each element is a list of frame names with length num_frames and skipping frames according to stride
dataset.append((frame_names, act_names[i+k*self.stride][1]))
# print('frame_names: ', frame_names)
if shuffle:
np.random.shuffle(dataset)
else:
dataset = np.array(dataset)
return indices, dataset
def append_sos(self, dataset, indices, obs_names, act_names, ind):
# add sequences to the dataset with zero tokens before the start of the solve
# ind: index of actual start of sequence
for i in range(0, self.num_frames - 1):
index_list = [0]*(self.num_frames - i - 1)
frame_names = [0]*(self.num_frames - i - 1)
pad_len = len(frame_names)
for j in range(0, self.num_frames - pad_len):
index_list.append(obs_names[ind+j][0])
frame_names.append(obs_names[ind+j][1])
act_name = act_names[ind+j][1]
dataset.append((frame_names, act_name))
indices.append(index_list)
if __name__ == '__main__':
dataset = RoboTurkObs(num_frames=5, stride=1, dir='data/PandaPickAndPlace-v1/data', stage='train', shuffle=True)
# dataset = RoboTurk(num_frames=5, stride=1, dir='/media/jer/Crucial X6/data/RoboTurk_videos/bins-Bread', stage='train', shuffle=True)
# test_sampler = RandomSampler(dataset, replacement=False, num_samples=int(len(dataset) * 0.01))
test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0)
# joints = []
# for i, data in enumerate(test_loader):
# joint = dataset[i]['y']
# joints.append(joint)
# joints = torch.cat(joints, dim=0)
# print('joints shape: ', torch.tensor(joints).shape)
# print('avg joints: ', torch.mean(joints, dim=0))
print(dataset)
for i in range(10):
print('dir: ', dataset.dir)
print('clip ', i)
print("clips in the dataset: ", len(dataset.dataset))
# print('clip length: ', len(dataset[0]))
print('dataset: ', dataset[i])
print('frame shape: ', dataset[i]['data'].shape)
print('joint shape: ', dataset[i]['y'].shape)
frames = dataset[i]['data']
jointdata = dataset[i]['y']