-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransformer.py
152 lines (123 loc) · 5.52 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn as nn
import torch.optim as optim
from positional_encoding import PositionalEncoding
import math
import numpy as np
class Transformer(nn.Module):
# Constructor
def __init__(
self,
dim_model=2048,
num_heads=8,
num_encoder_layers=6,
num_decoder_layers=6,
dropout_p=0.1,
freeze_resnet=False
):
super().__init__()
self.dim_model = dim_model
self.input_dim = 2048
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.SOS_token = torch.ones((1, 1, self.dim_model), dtype=torch.float32, device=self.device) * -100
# RESNET
self.resnet50 = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=True)
# remove last layer
self.resnet50 = nn.Sequential(*list(self.resnet50.children())[:-1])
self.resnet50.to(self.device)
# freeze resnet50
if freeze_resnet:
print('using frozen ResNet!')
# self.resnet50.eval()
for param in self.resnet50.parameters():
param.requires_grad = False
else:
print('not freezing ResNet!')
# self.resnet50.train()
# LAYERS
self.positional_encoder = PositionalEncoding(
dim_model=dim_model, dropout_p=dropout_p, max_len=64
)
# self.embedding = nn.Embedding(num_tokens, dim_model)
self.embedding = nn.Linear(self.input_dim, dim_model)
self.transformer = nn.Transformer(
d_model=dim_model,
nhead=num_heads,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
dropout=dropout_p,
)
self.out = nn.Linear(dim_model, 4)
# def forward(self, src, tgt, tgt_mask=None, src_pad_mask=None, tgt_pad_mask=None):
def forward(self, X):
# src = self.embedding(src)
# tgt = self.embedding(tgt)
# self.SOS_token = self.SOS_token.repeat(src.shape[0], 1, 1)
# print("src", src.shape)
# print("SOS", self.SOS_token.shape)
# # append SOS token to the beginning of the target sequence
# src = torch.cat((self.SOS_token, src), dim=1)
# tgt = torch.cat((self.SOS_token, tgt), dim=1)
# Embedding + positional encoding - Out size = (batch_size, sequence length, dim_model)
X_emb = []
for clip in X: # X is a batch of clips: (batch_size, num_frames, num_channels, img_size, img_size)
# encode image
emb = self.resnet50(clip) # clip acting as mini-batch
X_emb.append(emb)
X_emb = torch.stack(X_emb)
X_emb = X_emb.squeeze(3)
X_emb = X_emb.squeeze(3)
X_emb = self.embedding(X_emb) # projecting from resnet output dim to transformer input dim: (batch_size, num_frames, dim_model)
SOS_token = self.SOS_token.repeat(X_emb.shape[0], 1, 1) # repeat SOS token for batch
X_emb = torch.cat((SOS_token, X_emb), dim=1)
y = X_emb # because the target needs to be in the same vector space as the input.
# we will predict a linear projection of the next embedding (see self.out in transformer.py)
y = torch.tensor(y).to(self.device)
# y_input = y
# y_expected = y
# shift the tgt by one so we always predict the next embedding
y_input = y[:,:-1] # all but last
# Get mask to mask out the future frames
sequence_length = y_input.size(1)
tgt_mask = self.get_tgt_mask(sequence_length).to(self.device)
src = X_emb
tgt = y_input
src = src * math.sqrt(self.dim_model)
tgt = tgt * math.sqrt(self.dim_model)
src = self.positional_encoder(src)
tgt = self.positional_encoder(tgt)
# We could use the parameter batch_first=True, but our KDL version doesn't support it yet, so we permute
# to obtain size (sequence length, batch_size, dim_model),
src = src.permute(1,0,2)
tgt = tgt.permute(1,0,2)
transformer_out = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=None, tgt_key_padding_mask=None)
out = self.out(transformer_out) # outpout size: (sequence length, batch_size, 8)
# out = transformer_out
return out
def get_tgt_mask(self, size) -> torch.tensor:
# Generates a square matrix where the each row allows one word more to be seen
mask = torch.tril(torch.ones(size, size) == 1) # Lower triangular matrix
# mask = torch.zeros(size, size)
# mask[-1] = 1
# mask[]
mask = mask.float()
mask = mask.masked_fill(mask == 0, float('-inf')) # Convert zeros to -inf
mask = mask.masked_fill(mask == 1, float(0.0)) # Convert ones to 0
# mask = self.transformer.generate_square_subsequent_mask(1)
# EX for size=5:
# [[0., 0., 0., 0., -inf.],
# [0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.]]
# EX for size=5:
# [[0., -inf, -inf, -inf, -inf],
# [0., 0., -inf, -inf, -inf],
# [0., 0., 0., -inf, -inf],
# [0., 0., 0., 0., -inf],
# [0., 0., 0., 0., 0.]]
return mask
def create_pad_mask(self, matrix: torch.tensor, pad_token: int) -> torch.tensor:
# If matrix = [1,2,3,0,0,0] where pad_token=0, the result mask is
# [False, False, False, True, True, True]
return (matrix == pad_token)