-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmms.R
180 lines (128 loc) · 5.35 KB
/
mms.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# A script to provide some insight to M&M distributions.
# Jesse Hamner, 2012
library(foreign)
#setwd("")
fontsize=12
cexval=1.2
# A function to draw a distribution normal curve over the histogram:
# (Thanks to Peter Dalgaard)
addNorm <- function(data,color,linewidth) {
xfit<-seq(min(data),max(data),length=80)
yfit<-dnorm(xfit,mean=mean(data),sd=sd(data))
yfit <- yfit*diff(h$mids[1:2])*length(data)
lines(xfit, yfit, col=color, lwd=linewidth)
return;
}
addText <- function(xcoord,ycoord,avg,sd,med) {
text(xcoord,ycoord,labels=paste("µ = ",avg,sep=""), cex=1.5)
text(xcoord,(ycoord-0.7),labels=paste("σ = ",sd,sep=""),cex=1.5)
text(xcoord,(ycoord-1.4),labels=paste("med. = ",med,sep=""),cex=1.5)
return;
}
flatTop <- function(datavector,topofrange) {
for(i in 1:length(datavector)) {
if (datavector[i]>topofrange) { datavector[i]=topofrange }
}
return(datavector);
}
# get grades for the first exam:
mms<-read.table("MM2012.csv", sep = "\t", header=TRUE, fill=TRUE)
attach(mms)
sumstat=Total
# Create summary statistics for Exam 1 raw values:
minimum=min(sumstat)
maximum=max(sumstat)
avg<-round(mean((sumstat)),digits=1)
sd<-round(sd(sumstat),digits=1)
mediangrade<-median(sumstat)
png(filename="Totalmmsrawhist.png", res=300, bg="white", type="quartz", pointsize=fontsize, width=6, height=6, units="in")
# Histogram
h<-hist(x=sumstat,breaks=8,
col="gray",
main="Histogram of M&Ms",
cex=1.0,
xlab=paste("Total","Count", sep=" "),
ylim=c(0,12),
xlim=c(45,65)
)
# Annotation text:
addText(xcoord=50,ycoord=6,avg=avg,sd=sd,med=mediangrade)
text(70,8.0,labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=cexval)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
addNorm(data=sumstat,color="red", linewidth=2)
dev.off()
# Second Histogram
sumstat=Blue
# Create summary statistics for Exam 1 raw values:
minimum=min(sumstat)
maximum=max(sumstat)
avg<-round(mean((sumstat)),digits=1)
sd<-round(sd(sumstat),digits=1)
mediangrade<-median(sumstat)
#png(filename="Bluemmsrawhist.png", res=300, bg="white", type="quartz", pointsize=fontsize, width=6, height=6, units="in")
# Histogram
h<-hist(x=sumstat,breaks=8,col="gray", main="Histogram of Blue M&Ms", cex=1.0, xlab=paste("Blue","Count", sep=" "), ylim=c(0,12), xlim=c(5,20))
# Annotation text:
addText(xcoord=7,ycoord=9,avg=avg,sd=sd,med=mediangrade)
#text(70,8.0,labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=1.2)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
addNorm(data=sumstat,color="red", linewidth=2)
#dev.off()
# Third Histogram
sumstat=Green
# Create summary statistics for Exam 1 raw values:
minimum=min(sumstat)
maximum=max(sumstat)
avg<-round(mean((sumstat)),digits=1)
sd<-round(sd(sumstat),digits=1)
mediangrade<-median(sumstat)
png(filename="Greenmmsrawhist.png", res=300, bg="white", type="quartz", pointsize=fontsize, width=6, height=6, units="in")
# Histogram
h<-hist(x=sumstat,breaks=8,col="gray", main="Histogram of Green M&Ms", cex=1.0, xlab=paste("Green","Count", sep=" "), ylim=c(0,7), xlim=c(6,18))
# Annotation text:
addText(xcoord=12,ycoord=6,avg=avg,sd=sd,med=mediangrade)
#text(70,8.0,labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=1.2)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
addNorm(data=sumstat,color="red", linewidth=2)
dev.off()
# Fourth Histogram
sumstat=Brown
# Create summary statistics for Exam 1 raw values:
minimum=min(sumstat)
maximum=max(sumstat)
avg<-round(mean((sumstat)),digits=1)
sd<-round(sd(sumstat),digits=1)
mediangrade<-median(sumstat)
png(filename="Brownmmsrawhist.png", res=300, bg="white", type="quartz", pointsize=fontsize, width=6, height=6, units="in")
# Histogram
h<-hist(x=sumstat,breaks=8,col="gray", main="Histogram of Brown M&Ms", cex=1.0, xlab=paste("Brown","Count", sep=" "), ylim=c(0,7), xlim=c(2,14))
# Annotation text:
addText(xcoord=12,ycoord=5,avg=avg,sd=sd,med=mediangrade)
#text(70,8.0,labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=1.2)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
addNorm(data=sumstat,color="red", linewidth="2")
dev.off()
# fifth Histogram
sumstat=Weight
# Create summary statistics for Exam 1 raw values:
minimum=min(sumstat)
maximum=max(sumstat)
avg<-round(mean((sumstat)),digits=1)
sd<-round(sd(sumstat),digits=1)
mediangrade<-median(sumstat)
png(filename="Weightmmsrawhist.png", res=300, bg="white", type="quartz", pointsize=fontsize, width=6, height=6, units="in")
# Histogram
h<-hist(x=sumstat,breaks=4,col="gray", main="Histogram of M&M Bag Weights", cex=1.0, xlab=paste("Weight","of each bag", sep=" "), ylim=c(2,14), xlim=c(47,52))
# Annotation text:
addText(xcoord=48,ycoord=12,avg=avg,sd=sd,med=mediangrade)
text(48,9.7,labels=paste(paste(paste("Range: [",minimum,sep=""),maximum,sep=","),"]",sep=""),cex=1.2)
#text(50,6.75,labels=paste("Raw Min = ",minimum,sep=""),cex=1.4)
#text(50,6.25,labels=paste("Raw Max = ",maximum,sep=""),cex=1.4)
addNorm(data=sumstat,color="red", linewidth="2")
dev.off()
detach(mms)
# EOF