-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathvignette_examples.py
executable file
·261 lines (240 loc) · 10.1 KB
/
vignette_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
ANFIS in torch: test cases form the Vignette paper:
"ANFIS vignette" by Cristobal Fresno and Elmer A. Fernández,
http://www.bdmg.com.ar/?page_id=176, or CRAN package 'anfis'
@author: James Power <james.power@mu.ie> Apr 12 18:13:10 2019
'''
import sys
import torch
import anfis
from experimental import train_anfis, test_anfis, plot_all_mfs
import jang_examples
from membership import BellMembFunc, GaussMembFunc,\
make_gauss_mfs, make_bell_mfs, make_tri_mfs, make_trap_mfs
dtype = torch.float
def vignette_ex1():
'''
These are the original (untrained) MFS for Vignette example 1.
Uses 4 Bell membership functions in each input
'''
invardefs = [
('x0', make_bell_mfs(4, 1, [-10, -3.5, 3.5, 10])),
('x1', make_bell_mfs(4, 1, [-10, -3.5, 3.5, 10])),
]
outvars = ['y0']
anf = anfis.AnfisNet('Vignette Example 1', invardefs, outvars)
return anf
def vignette_ex2():
'''
These are the original (untrained) MFS for Vignette example 2.
Like example 1, but uses 5 Bell MFs for each input.
'''
invardefs = [
('x0', make_bell_mfs(4, 1, [-10, -5, 0, 5, 10])),
('x1', make_bell_mfs(4, 1, [-10, -5, 5, 0, 10])),
]
outvars = ['y0']
anf = anfis.AnfisNet('Vignette Example 1', invardefs, outvars)
return anf
def vignette_ex3():
'''
These are the original (untrained) MFS for Vignette example 3.
Like example 1, but now using 5 Gaussian MFs.
'''
invardefs = [
('x0', make_gauss_mfs(2, [-10, -5, 0, 5, 10])),
('x1', make_gauss_mfs(2, [-10, -5, 0, 5, 10]))
]
outvars = ['y0']
anf = anfis.AnfisNet('Vignette Example 3', invardefs, outvars)
return anf
def vignette_ex3a():
'''
Not actually from Vignette, but I was just trying triangular Mfs
'''
invardefs = [
('x0', make_tri_mfs(7.5, [-10, -5, 0, 5, 10])),
('x1', make_tri_mfs(7.5, [-10, -5, 0, 5, 10])),
]
outvars = ['y0']
anf = anfis.AnfisNet('Jang\'s example 1', invardefs, outvars)
return anf
def vignette_ex3b():
'''
Not actually from Vignette, but I was just trying trapezoid Mfs
'''
invardefs = [
('x0', make_trap_mfs(2, 2, [-10, -5, 0, 5, 10])),
('x1', make_trap_mfs(2, 2, [-10, -5, 0, 5, 10])),
]
outvars = ['y0']
anf = anfis.AnfisNet('Jang\'s example 1', invardefs, outvars)
return anf
def vignette_ex5():
'''
These are the original (untrained) MFS for Vignette example 5
Same MFs as for example 3, but now there will be two outputs.
These will be: y0 = sinc(x0, x1) and y1 = 1 - sinc(x0,x1).
'''
invardefs = [
('x0', make_gauss_mfs(2, [-10, -5, 0, 5, 10])),
('x1', make_gauss_mfs(2, [-10, -5, 0, 5, 10]))
]
outvars = ['y0', 'y1']
anf = anfis.AnfisNet('Vignette Example 5', invardefs, outvars)
return anf
def vignette_ex1_trained():
'''
This is a hard-coded version of Vignette example 1, R version,
using the mfs/coefficients calculated by R after 57 epochs.
'''
invardefs = [
('x0', [
BellMembFunc(3.939986, 1.628525, -9.979724),
BellMembFunc(3.433400, 1.818008, -5.150898),
BellMembFunc(3.433400, 1.818008, 5.150898),
BellMembFunc(3.939986, 1.628525, 9.979724),
]),
('x1', [
BellMembFunc(3.939986, 1.628525, -9.979724),
BellMembFunc(3.433400, 1.818008, -5.150898),
BellMembFunc(3.433400, 1.818008, 5.150898),
BellMembFunc(3.939986, 1.628525, 9.979724),
])
]
outvars = ['y0']
anf = anfis.AnfisNet('Vignette Example 1 (R version)', invardefs, outvars)
rules = torch.tensor([
[[-0.03990093, -0.03990093, -0.85724840]],
[[0.12247975, -0.02936995, 1.22666375]],
[[0.12247975, 0.02936995, 1.22666375]],
[[-0.03990093, 0.03990093, -0.85724840]],
[[-0.02936995, 0.12247975, 1.22666375]],
[[0.07627426, 0.07627426, 0.31795799]],
[[0.07627426, -0.07627426, 0.31795799]],
[[-0.02936995, -0.12247975, 1.22666375]],
[[0.02936995, 0.12247975, 1.22666375]],
[[-0.07627426, 0.07627426, 0.31795799]],
[[-0.07627426, -0.07627426, 0.31795799]],
[[0.02936995, -0.12247975, 1.22666375]],
[[0.03990093, -0.03990093, -0.85724840]],
[[-0.12247975, -0.02936995, 1.22666375]],
[[-0.12247975, 0.02936995, 1.22666375]],
[[0.03990093, 0.03990093, -0.85724840]],
], dtype=dtype)
anf.coeff = rules
return anf
def vignette_ex5_trained():
'''
This is a hard-coded version of Vignette example 3, R version,
using the mfs/coefficients calculated by R after 10 epochs.
'''
invardefs = [
('x0', [
GaussMembFunc(-9.989877, 2.024529),
GaussMembFunc(-4.861332, 2.009401),
GaussMembFunc(-5.100757e-12, 1.884703e+00),
GaussMembFunc(4.861332, 2.009401),
GaussMembFunc(9.989877, 2.024529),
]),
('x1', [
GaussMembFunc(-9.989877, 2.024529),
GaussMembFunc(-4.861332, 2.009401),
GaussMembFunc(-7.534084e-13, 1.884703e+00),
GaussMembFunc(4.861332, 2.009401),
GaussMembFunc(9.989877, 2.024529),
])
]
outvars = ['y0', 'y1']
anf = anfis.AnfisNet('Vignette Example 5 (R version)', invardefs, outvars)
y0_coeff = torch.tensor([
4.614289e-03, 4.614289e-03, 7.887969e-02, -1.349178e-02,
-9.089431e-03, -1.694363e-01, 7.549623e-02, 5.862259e-14,
6.962636e-01, -1.349178e-02, 9.089431e-03, -1.694363e-01,
4.614289e-03, -4.614289e-03, 7.887969e-02, -9.089431e-03,
-1.349178e-02, -1.694363e-01, 2.645509e-02, 2.645509e-02,
3.146186e-01, -1.372046e-01, 1.590475e-13, -9.501776e-01,
2.645509e-02, -2.645509e-02, 3.146186e-01, -9.089431e-03,
1.349178e-02, -1.694363e-01, 3.138560e-13, 7.549623e-02,
6.962636e-01, -7.561163e-14, -1.372046e-01, -9.501776e-01,
-3.100872e-14, -9.339810e-13, 1.363890e+00, -4.795844e-14,
1.372046e-01, -9.501776e-01, -2.681160e-13, -7.549623e-02,
6.962636e-01, 9.089431e-03, -1.349178e-02, -1.694363e-01,
-2.645509e-02, 2.645509e-02, 3.146186e-01, 1.372046e-01,
1.790106e-13, -9.501776e-01, -2.645509e-02, -2.645509e-02,
3.146186e-01, 9.089431e-03, 1.349178e-02, -1.694363e-01,
-4.614289e-03, 4.614289e-03, 7.887969e-02, 1.349178e-02,
-9.089431e-03, -1.694363e-01, -7.549623e-02, -7.225253e-14,
6.962636e-01, 1.349178e-02, 9.089431e-03, -1.694363e-01,
-4.614289e-03, -4.614289e-03, 7.887969e-02,
], dtype=dtype).view(25, 3)
y1_coeff = torch.tensor([
-1.563721e-02, 1.563721e-02, 7.029522e-01, 6.511928e-03,
-2.049419e-03, 1.070100e+00, 8.517531e-02, 2.918635e-13,
-2.147609e-01, 6.511928e-03, 2.049419e-03, 1.070100e+00,
-1.563721e-02, 1.563721e-02, 7.029522e-01, 2.049419e-03,
-6.511928e-03, 1.070100e+00, 3.083698e-02, 3.083698e-02,
-6.477780e-01, 1.310872e-01, 6.044816e-14, 1.928089e+00,
-3.083698e-02, 3.083698e-02, 6.477780e-01, 2.049419e-03,
-6.511928e-03, 1.070100e+00, 5.274627e-13, 8.517531e-02,
-2.147609e-01, 2.688203e-13, 1.310872e-01, 1.928089e+00,
-3.522058e-15, 9.355811e-13, 3.521679e-01, 1.036118e-13,
-1.310872e-01, 1.928089e+00, 2.760916e-13, 8.517531e-02,
-2.147609e-01, 2.049419e-03, 6.511928e-03, 1.070100e+00,
-3.083698e-02, 3.083698e-02, 6.477780e-01, 1.310872e-01,
-1.518057e-13, 1.928089e+00, 3.083698e-02, 3.083698e-02,
-6.477780e-01, 2.049419e-03, 6.511928e-03, 1.070100e+00,
-1.563721e-02, 1.563721e-02, 7.029522e-01, 6.511928e-03,
-2.049419e-03, 1.070100e+00, 8.517531e-02, 1.358819e-13,
-2.147609e-01, 6.511928e-03, 2.049419e-03, 1.070100e+00,
-1.563721e-02, 1.563721e-02, 7.029522e-01,
], dtype=dtype).view(25, 3)
anf.coeff = torch.stack([y0_coeff, y1_coeff], dim=1)
return anf
if __name__ == '__main__':
example = '3a'
show_plots = True
if len(sys.argv) == 2: # One arg: example
example = sys.argv[1].upper()
show_plots = False
print('Example {} from Vignette paper'.format(example))
if example == '1':
model = vignette_ex1()
train_data = jang_examples.make_sinc_xy_large()
train_anfis(model, train_data, 100, show_plots)
elif example == '1T':
model = vignette_ex1_trained()
test_data = jang_examples.make_sinc_xy()
test_anfis(model, test_data, show_plots)
elif example == '2':
model = vignette_ex2()
train_data = jang_examples.make_sinc_xy_large(1000)
train_anfis(model, train_data, 100, show_plots)
elif example == '3':
model = vignette_ex3()
train_data = jang_examples.make_sinc_xy_large()
train_anfis(model, train_data, 50, show_plots)
elif example == '3a':
model = vignette_ex3a()
train_data = jang_examples.make_sinc_xy_large(1000)
model.layer.fuzzify.show()
train_anfis(model, train_data, 250, show_plots)
model.layer.fuzzify.show()
elif example == '3b':
model = vignette_ex3b()
train_data = jang_examples.make_sinc_xy_large(1000)
plot_all_mfs(model, train_data.dataset.tensors[0])
train_anfis(model, train_data, 250, show_plots)
plot_all_mfs(model, train_data.dataset.tensors[0])
elif example == '5':
model = vignette_ex5()
train_data = jang_examples.make_sinc_xy2()
train_anfis(model, train_data, 50, show_plots)
elif example == '5T':
model = vignette_ex5_trained()
test_data = jang_examples.make_sinc_xy2()
test_anfis(model, test_data, show_plots)
else:
print('ERROR - no such example')