-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain_gan.py
332 lines (272 loc) · 13 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from argparse import ArgumentParser
from pathlib import Path
import shutil
import os
import imageio
def silence_imageio_warning(*args, **kwargs):
pass
imageio.core.util._precision_warn = silence_imageio_warning
import gin
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from evaluate.gan import FIDScore, FixedSampleGeneration, ImageGrid
from datasets import get_dataset
from augment import get_augment
from models.gan import get_architecture
from utils import cycle
from training.gan import setup
from utils import Logger
from utils import count_parameters
from utils import set_grad
# import for gin binding
import penalty
# https://github.com/pytorch/pytorch/issues/20630
os.environ['NCCL_LL_THRESHOLD'] = '0'
def parse_args():
parser = ArgumentParser(description='Training script: GANs with DistributedDataParallel (DDP).')
parser.add_argument('gin_config', type=str, help='Path to the gin configuration file')
parser.add_argument('architecture', type=str, help='Architecture')
parser.add_argument('--mode', default='std', type=str, help='Training mode (default: std)')
parser.add_argument('--penalty', default='none', type=str, help='Penalty (default: none)')
parser.add_argument('--aug', default='none', type=str, help='Augmentation (default: hfrt)')
parser.add_argument('--use_warmup', action='store_true', help='Use warmup strategy on LR')
# Hyperparameters
parser.add_argument('--temp', default=0.1, type=float,
help='Temperature hyperparameter for contrastive losses')
parser.add_argument('--lbd_a', default=1.0, type=float,
help='Relative strength of the fake loss of ContraD')
# Options for logging specification
parser.add_argument('--no_fid', action='store_true',
help='Do not track FIDs during training')
parser.add_argument('--no_gif', action='store_true',
help='Do not save GIF of sample generations from a fixed latent periodically during training')
parser.add_argument('--n_eval_avg', default=3, type=int,
help='How many times to average FID and IS')
parser.add_argument('--print_every', help='', default=50, type=int)
parser.add_argument('--evaluate_every', help='', default=2000, type=int)
parser.add_argument('--save_every', help='', default=100000, type=int)
parser.add_argument('--comment', help='Comment', default='', type=str)
# Options for resuming / fine-tuning
parser.add_argument('--resume', default=None, type=str,
help='Path to logdir to resume the training')
parser.add_argument('--finetune', default=None, type=str,
help='Path to logdir that contains a pre-trained checkpoint of D')
# Options for DistributedDataParallel (DDP)
parser.add_argument('--workers', default=0, type=int, metavar='N',
help='Number of data loading workers (default: 0)')
parser.add_argument('--world-size', default=1, type=int,
help='Number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='Node rank for distributed training')
parser.add_argument('--port', default=40404, type=int,
help='Port number to be allocated for distributed training')
return parser.parse_args()
def _update_warmup(optimizer, cur_step, warmup, lr):
if warmup > 0:
ratio = min(1., (cur_step + 1) / warmup)
lr_w = ratio * lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr_w
def _sample_generator(G, num_samples, enable_grad=True):
latent_samples = G.sample_latent(num_samples)
with torch.set_grad_enabled(enable_grad):
generated_data = G(latent_samples)
return generated_data
@gin.configurable("options")
def get_options_dict(dataset=gin.REQUIRED,
loss=gin.REQUIRED,
batch_size=64, fid_size=10000,
max_steps=200000, warmup=0, n_critic=1,
lr=2e-4, lr_d=None, beta=(.5, .999),
lbd=10., lbd2=10.):
if lr_d is None:
lr_d = lr
return {
"dataset": dataset,
"batch_size": batch_size,
"fid_size": fid_size,
"loss": loss,
"max_steps": max_steps, "warmup": warmup,
"n_critic": n_critic,
"lr": lr, "lr_d": lr_d, "beta": beta,
"lbd": lbd, "lbd2": lbd2
}
def train(P, opt, train_fn, models, optimizers, train_loader, logger):
generator, discriminator = models
opt_G, opt_D = optimizers
losses = {'G_loss': [], 'D_loss': [], 'D_penalty': [],
'D_real': [], 'D_gen': []}
metrics = {}
if P.rank == 0:
metrics['image_grid'] = ImageGrid(volatile=P.no_gif)
metrics['fixed_gen'] = FixedSampleGeneration(generator.module, volatile=P.no_gif)
if not P.no_fid:
metrics['fid_score'] = FIDScore(opt['dataset'], opt['fid_size'], P.n_eval_avg)
logger.log_dirname("Steps {}".format(P.starting_step))
dist.barrier()
for step in range(P.starting_step, opt['max_steps']+1):
generator.train()
discriminator.train()
if P.use_warmup:
_update_warmup(opt_G, step, opt["warmup"], opt["lr"])
_update_warmup(opt_D, step, opt["warmup"], opt["lr_d"])
# Essential for training w/ multiple DDP models
set_grad(generator, False)
set_grad(discriminator, True)
for i in range(opt['n_critic']):
images, labels = next(train_loader)
images = images.cuda()
gen_images = _sample_generator(generator, images.size(0),
enable_grad=False)
d_loss, aux = train_fn["D"](P, discriminator, opt, images, gen_images)
loss = d_loss + aux['penalty']
opt_D.zero_grad()
loss.backward()
opt_D.step()
losses['D_loss'].append(d_loss.item())
losses['D_penalty'].append(aux['penalty'].item())
losses['D_real'].append(aux['d_real'].item())
losses['D_gen'].append(aux['d_gen'].item())
# Essential for training w/ multiple DDP models
set_grad(generator, True)
set_grad(discriminator, False)
gen_images = _sample_generator(generator, images.size(0))
g_loss = train_fn["G"](P, discriminator, opt, images, gen_images)
opt_G.zero_grad()
g_loss.backward()
opt_G.step()
losses['G_loss'].append(g_loss.item())
generator.eval()
discriminator.eval()
if step % P.print_every == 0 and P.rank == 0:
logger.log('[Steps %7d] [G %.3f] [D %.3f]' %
(step, losses['G_loss'][-1], losses['D_loss'][-1]))
for name in losses:
values = losses[name]
if len(values) > 0:
logger.scalar_summary('gan/train/' + name, values[-1], step)
if step % P.evaluate_every == 0 and P.rank == 0:
logger.log_dirname("Steps {}".format(step + 1))
fid_score = metrics.get('fid_score')
fixed_gen = metrics.get('fixed_gen')
image_grid = metrics.get('image_grid')
if fid_score:
fid_avg = fid_score.update(step, generator.module)
fid_score.save(logger.logdir + f'/results_fid_{P.eval_seed}.csv')
logger.scalar_summary('gan/test/fid', fid_avg, step)
logger.scalar_summary('gan/test/fid/best', fid_score.best, step)
if not P.no_gif:
_ = fixed_gen.update(step)
imageio.mimsave(logger.logdir + f'/training_progress_{P.eval_seed}.gif',
fixed_gen.summary())
aug_grid = image_grid.update(step, P.augment_fn(images))
imageio.imsave(logger.logdir + f'/real_augment_{P.eval_seed}.jpg', aug_grid)
G_state_dict = generator.module.state_dict()
D_state_dict = discriminator.module.state_dict()
torch.save(G_state_dict, logger.logdir + '/gen.pt')
torch.save(D_state_dict, logger.logdir + '/dis.pt')
if fid_score and fid_score.is_best:
torch.save(G_state_dict, logger.logdir + '/gen_best.pt')
torch.save(D_state_dict, logger.logdir + '/dis_best.pt')
if step % P.save_every == 0:
torch.save(G_state_dict, logger.logdir + f'/gen_{step}.pt')
torch.save(D_state_dict, logger.logdir + f'/dis_{step}.pt')
torch.save({
'epoch': step,
'optim_G': opt_G.state_dict(),
'optim_D': opt_D.state_dict(),
}, logger.logdir + '/optim.pt')
dist.barrier()
def worker(gpu, P):
torch.cuda.set_device(gpu)
print("Use GPU: {} for training".format(gpu))
gin.parse_config_files_and_bindings(['configs/defaults/gan.gin',
'configs/defaults/augment.gin',
P.gin_config], [])
options = get_options_dict()
P.rank = P.rank * P.n_gpus_per_node + gpu
dist.init_process_group(backend='nccl',
init_method=f'tcp://127.0.0.1:{P.port}',
world_size=P.world_size,
rank=P.rank)
train_set, _, image_size = get_dataset(dataset=options['dataset'])
train_sampler = DistributedSampler(train_set)
options['batch_size'] = options['batch_size'] // P.n_gpus_per_node
drop_last = 'moco' in P.architecture
train_loader = DataLoader(train_set, shuffle=False, pin_memory=True, num_workers=P.workers,
batch_size=options['batch_size'], drop_last=drop_last, sampler=train_sampler)
train_loader = cycle(train_loader, distributed=True)
generator, discriminator = get_architecture(P.architecture, image_size, P=P)
if P.resume:
print(f"=> Loading checkpoint from '{P.resume}'")
state_G = torch.load(f"{P.resume}/gen.pt")
state_D = torch.load(f"{P.resume}/dis.pt")
generator.load_state_dict(state_G)
discriminator.load_state_dict(state_D)
if P.finetune:
print(f"=> Loading checkpoint for fine-tuning: '{P.finetune}'")
state_D = torch.load(f"{P.finetune}/dis.pt")
discriminator.load_state_dict(state_D, strict=False)
discriminator.reset_parameters(discriminator.linear)
P.comment += 'ft'
generator = nn.SyncBatchNorm.convert_sync_batchnorm(generator)
discriminator = nn.SyncBatchNorm.convert_sync_batchnorm(discriminator)
generator = generator.cuda()
discriminator = discriminator.cuda()
G_optimizer = optim.Adam(generator.parameters(), lr=options["lr"], betas=options["beta"])
D_optimizer = optim.Adam(discriminator.parameters(), lr=options["lr_d"], betas=options["beta"])
if P.rank == 0:
if P.resume:
logger = Logger(None, resume=P.resume)
else:
logger = Logger(f'{P.filename}{P.comment}', subdir=f'gan/{P.gin_stem}/{P.architecture}')
shutil.copy2(P.gin_config, f"{logger.logdir}/config.gin")
P.logdir = logger.logdir
P.eval_seed = np.random.randint(10000)
else:
class DummyLogger(object):
def log(self, string):
pass
def log_dirname(self, string):
pass
logger = DummyLogger()
if P.resume:
opt = torch.load(f"{P.resume}/optim.pt")
G_optimizer.load_state_dict(opt['optim_G'])
D_optimizer.load_state_dict(opt['optim_D'])
logger.log(f"Checkpoint loaded from '{P.resume}'")
P.starting_step = opt['epoch'] + 1
else:
logger.log(generator)
logger.log(discriminator)
logger.log(f"# Params - G: {count_parameters(generator)}, D: {count_parameters(discriminator)}")
logger.log(options)
P.starting_step = 1
if P.finetune:
logger.log(f"Checkpoint loaded from '{P.finetune}'")
dist.barrier()
P.augment_fn = get_augment(mode=P.aug).cuda()
generator = DistributedDataParallel(generator, device_ids=[gpu], broadcast_buffers=False)
generator.sample_latent = generator.module.sample_latent
discriminator = DistributedDataParallel(discriminator, device_ids=[gpu], broadcast_buffers=False)
train(P, options, P.train_fn,
models=(generator, discriminator),
optimizers=(G_optimizer, D_optimizer),
train_loader=train_loader, logger=logger)
if __name__ == '__main__':
P = parse_args()
if P.comment:
P.comment = '_' + P.comment
P.gin_stem = Path(P.gin_config).stem
P = setup(P)
P.n_gpus_per_node = torch.cuda.device_count()
P.world_size = P.n_gpus_per_node * P.world_size
P.distributed = True
mp.spawn(worker, nprocs=P.n_gpus_per_node, args=(P,))