forked from academicpages/academicpages.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
276 lines (223 loc) · 11.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
---
layout: default
title: Home
---
<!-- ========== BIO ========== -->
<div class="docs-section" id="bio">
<h4>About</h4>
<p>
I am a postdoctoral fellow at the University of Southern California, supported by the
<a href="https://croucher.org.hk/en/about-us" target="_blank"> Croucher Foundation of Hong Kong </a>.
I work at the
<a href="https://dornsife.usc.edu/cnt3d/" target="_blank"> Center for New Technologies in Drug Discovery and Development </a> and the
<a href="https://www.carc.usc.edu/" target="_blank"> Center for Advanced Research Computing </a>.
I am advised by
<a href="https://viterbi.usc.edu/directory/faculty/Nakano/Aiichiro/" target="_blank">Prof. Aiichiro Nakano</a>
and <a href="https://michelson.usc.edu/faculty-directory/vsevolod-katritch/" target="_blank">Prof. Vsevolod Katritch</a>.
I have extensive experience in Chemical Physics,
<a href="https://github.com/jhmlam/jhmlam.github.io/blob/master/assets/pdf/2000_Givoli_SummaryOnDogarra2000.pdf" target="_blank"> Numerical Algorithms</a> and
<a href="https://github.com/jhmlam/jhmlam.github.io/blob/master/assets/pdf/2009_DwarfsInParallelComputing_v00.pdf" target="_blank">Parallel Computing</a>.
<p style="display: none;">
"https://estija.github.io/"
============================================= REF
here s my current fpcous
I work on the foundations of machine learning, and my interests mostly lie in the intersection of machine learning, theoretical computer science and statistics. The goal of my research is to study and discover the underlying principles which govern learning, and to leverage this understanding to build practical machine learning systems which are more efficient, fair and robust. A large part of my work aims to inspect questions which arise from modern applications and challenges of machine learning. If you're interested in learning more, here are some questions I've recently been working on:
Maksim is a bioinformatics software engineer at the Irwin Lab. Maksim attained his Bachelor's of Chemistry at the
University of California, Berkeley in 2020. At Berkeley, Maksim did undergraduate research in the advanced applications of nuclear magnetic resonance.
After Berkeley, Maksim started working as a research chemist at a large corporation. Maksim always had an interest in computer science and that interest drew him to join the Irwin Lab, which merges both his interests in chemistry and software.
What is the role of computational and statistical constraints in learning and optimization? Are there inherent trade-offs between the amount of memory required for learning or optimization, and the amount of data or computation required? How do we solve learning tasks with limited data, such as by designing optimal data augmentation and regularization techniques?
What are appropriate notions of fairness in various domains, and how do we train models which respect these notions? Similarly, how do we ensure trained models are robust, such as when evaluated on data distributions which differ from the original training distribution?
How can we understand deep neural networks and foundation models in the context of some of the above considerations?
My research is supported by an NSF CAREER award (2023), and Amazon Research Awards (2022 and 2024). This support is very gratefully acknowledged.
Here is my CV
</p>
</p>
<p>
</p>
</div>
<!-- ========== NEWS ========== -->
<div class="docs-section" id="news">
<h4>News</h4>
</div>
<!-- ========== PUBLICATIONS ========== -->
<div class="docs-section" id="publications">
<h4>Publications</h4>
<p>Most recent publications on <a href="{{ site.data.main_info.google_scholar }}" target="_blank">Google Scholar</a>. (The outbound hyperlinks for the papers/videos may take a little longer to redirect!)<br/>
<sup>‡</sup> indicates equal contribution.
</p>
<ul class="tab-nav">
<li><div class="button active" data-ref="#papers-selected">Selected</div></li>
<li><div class="button" data-ref="#papers-all">All</div></li>
</ul>
<div class="tab-content">
<div class="tab-pane active" id="papers-selected">
{% assign selected_papers = site.data.publications.papers | where: "selected", "y" %}
{% for paper in selected_papers %}
<div class="paper">
<p class="title"><b>{{ paper.title }}</b></p>
<p>{{ paper.authors }}</p>
<p><i>{{ paper.venue }}</i></p>
<div class="paper-buttons">
{% if paper.paper_pdf %}
<a class="button" href="{{ paper.paper_pdf }}" target="_blank">Paper</a>
{% endif %}
{% if paper.slides %}
<a class="button" href="{{ paper.slides | prepend: site.baseurl }}" target="_blank">Slides</a>
{% endif %}
{% if paper.poster %}
<a class="button" href="{{ paper.poster | prepend: site.baseurl }}" target="_blank">Poster</a>
{% endif %}
{% if paper.video %}
<a class="button" href="{{ paper.video }}" target="_blank">Video</a>
{% endif %}
{% if paper.code %}
<a class="button" href="{{ paper.code }}" target="_blank">Code</a>
{% endif %}
{% if paper.data %}
<a class="button" href="{{ paper.data }}" target="_blank">Data</a>
{% endif %}
</div>
</div>
{% endfor %}
</div>
<div class="tab-pane" id="papers-all">
{% for paper in site.data.publications.papers %}
<div class="paper">
<p class="title"><b>{{ paper.title }}</b></p>
<p>{{ paper.authors }}</p>
<p><i>{{ paper.venue }}</i></p>
<div class="paper-buttons">
{% if paper.paper_pdf %}
<a class="button" href="{{ paper.paper_pdf }}" target="_blank">Paper</a>
{% endif %}
{% if paper.slides %}
<a class="button" href="{{ paper.slides | prepend: site.baseurl }}" target="_blank">Slides</a>
{% endif %}
{% if paper.poster %}
<a class="button" href="{{ paper.poster | prepend: site.baseurl }}" target="_blank">Poster</a>
{% endif %}
{% if paper.video %}
<a class="button" href="{{ paper.video }}" target="_blank">Video</a>
{% endif %}
{% if paper.code %}
<a class="button" href="{{ paper.code }}" target="_blank">Code</a>
{% endif %}
{% if paper.data %}
<a class="button" href="{{ paper.data }}" target="_blank">Data</a>
{% endif %}
</div>
</div>
{% endfor %}
</div>
</div>
</div>
<!-- ========== PROJECTS ==========
<div class="docs-section" id="projects">
<h4>Projects</h4>
<ul class="tab-nav">
<li><div class="button active" data-ref="#projects-selected">Selected</div></li>
<li><div class="button" data-ref="#projects-all">All</div></li>
</ul>
<div class="tab-content">
<div class="tab-pane active" id="projects-selected">
{% assign selected_projects = site.data.projects.projects | where: "selected", "y" %}
{% for project in selected_projects %}
{% assign index_modulo = forloop.index0 | modulo:3 %}
{% if index_modulo == 0 %}
<div class="row">
{% endif %}
<div class="four columns">
<div class="project-container">
<div class="project-image-container">
<a href="{{ project.url }}">
<img src="{{ project.thumbnail }}" class="u-max-full-width" />
</a>
</div>
<div class="project-caption">
<b>{{ project.title }}</b> <br/>
{{ project.subtitle }}
</div>
</div>
</div>
{% if index_modulo == 2 %}
</div>
{% endif %}
{% endfor %}
</div>
<div class="tab-pane" id="projects-all">
{% for project in site.data.projects.projects %}
{% assign index_modulo = forloop.index0 | modulo:3 %}
{% if index_modulo == 0 %}
<div class="row">
{% endif %}
<div class="four columns">
<div class="project-container">
<div class="project-image-container">
<a href="{{ project.url }}">
<img src="{{ project.thumbnail }}" class="u-max-full-width" />
</a>
</div>
<div class="project-caption">
<b>{{ project.title }}</b> <br/>
{{ project.subtitle }}
</div>
</div>
</div>
{% if index_modulo == 2 %}
</div>
{% endif %}
{% endfor %}
</div>
</div>
</div>
-->
<!-- ========== RESUME ========== -->
<div class="docs-section" id="resume">
<h4>Vitæ</h4>
<p>Full Resume (likely not the most updated!) in <a href={{ "/assets/cv/cv_web.pdf" | prepend: site.baseurl }} target="_blank">PDF</a>.</p>
<!-- The Timeline -->
<ul class="timeline">
{% for exp in site.data.experience.experiences %}
<li>
{% if exp.category == "work" %}
<div class="direction-l">
{% else %}
<div class="direction-r">
{% endif %}
<div class="flag-wrapper">
<span class="flag">{{ exp.place }}</span>
<span class="time-wrapper"><span class="time">{{ exp.time }}</span></span>
</div>
<div class="desc"><b>{{ exp.title }}</b> <br/> {{ exp.subtitle }}</div>
</div>
</li>
{% endfor %}
</ul>
</div>
<!-- ================================== CONTACT ============================ -->
<div class="docs-section" id="template">
<h4>Consultation Request</h4>
<form
action="https://formspree.io/f/mqkrprwe"
method="POST"
>
<label>
Your email:
<input type="email" name="email">
</label>
<label>
Your message:
<textarea name="message"></textarea>
</label>
<!-- your other form fields go here -->
<button type="submit">Send</button>
</form>
</div>
<div class="docs-section" id="template">
<h4>Website Design</h4>
This website is using template by Martin Saveski with modifications.
<!--<br/>-->
You can find the template needed to build your website in this <a href="https://github.com/msaveski/www_personal" target="_blank">GitHub repo</a>.
Send Martin an email, he replies! <br/>
<p xmlns:cc="http://creativecommons.org/ns#" xmlns:dct="http://purl.org/dc/terms/"><a property="dct:title" rel="cc:attributionURL" href="https://jhmlam.github.io/"> jhmlam.github.io</a> by <a rel="cc:attributionURL dct:creator" property="cc:attributionName" href="https://jhmlam.github.io/">Jordy Homing Lam</a> is licensed under <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1" target="_blank" rel="license noopener noreferrer" style="display:inline-block;">CC BY-NC-SA 4.0<img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/cc.svg?ref=chooser-v1" alt=""><img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/by.svg?ref=chooser-v1" alt=""><img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/nc.svg?ref=chooser-v1" alt=""><img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/sa.svg?ref=chooser-v1" alt=""></a></p>
</div>