-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAIEG_run.m
121 lines (99 loc) · 3.08 KB
/
AIEG_run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
% function [daily_return, total_return] = AIEG_run(data)
%{
This file is the run core for the Competitive online strategy based on
improved exponential gradient expert and aggregating method (AIEG).
For any usage of this function, the following papers should be cited as
reference:
[1] Yong Zhang, Jiahao Li, Xingyu Yang, and Jianliang Zhang. "Competitive
online strategy based on improved exponential gradient expert and
aggregating method" Computational Economics, 2023.
Inputs:
data -data with price relative sequences
Outputs:
daily_return -daily wealths
total_return -total wealths
%}
%% Parameter Setting
tc = 0; % transaction cost rate
eta_min = 0.01;
step = 0.01;
eta_max = 0.2;
w = 5;
%% Variables Inital
[T,N] = size(data);
b = zeros(T,N);
daily_return = zeros(T,1);
s = cell(1,N);
for ns = 1:N
s{1,ns} = 0;
end
num_eta=0;
for eta = eta_min:step:eta_max
num_eta = num_eta+1;
end
S = cell(1,N);
for nS = 1:N
S{1,nS} = ones(num_eta,1);
end
e = cell(T,num_eta);
h = ones(1,N)/N;
for i = 1:num_eta
e{1,i} = h;
end
%% Calculate the close prices
for t = 1:T
if t == 1
data_close(t,:) = data(t,:);
else
data_close(t,:) = data(t,:).*data_close(t-1,:);
end
end
%% Main
for t = 1:T
if t==1
b(1,:) = ones(1,N)/N;
daily_return(t,1) = b(t,:)*data(t,:)';
% daliy_exp_r(:,:,t) = b(:,:)*data(t,:)';
% exp_cumres(:,:,t) = daliy_exp_r(:,:,t);
else
t1=t;
if t1<w+2
x_t1(t1,:) = data(t1-1,:);
else
x_t1(t1,:) = l1median_VaZh_z(data_close((t1-w):(t1-1),:))./data_close(t1-1,:);
end
k=0;
for eta = eta_min:step:eta_max
k = k+1;
ff = e{t-1,k};
Z = ff.*exp(eta*x_t1(t1,:)/(ff*x_t1(t1,:)'))*ones(N,1);
f = ff.*exp(eta*x_t1(t1,:)/(ff*x_t1(t1,:)'));
f = f/Z;
e{t,k} = f;
exp_h(t-1,:)=data(t-1,:).*e{t-1,k};
exp_hat(t-1,:)=exp_h(t-1,:)/sum(exp_h(t-1,:));
exp_diff(t,:)=sum(abs(e{t,k}-exp_hat(t-1,:)));
for n1 = 1:N
S{1,n1}(k,1) = S{1,n1}(k,1)*(ff*data(t-1,:)'*(1-(tc)*exp_diff(t-1,:)));
end
s{1,N} = s{1,N}+S{1,N}(k,1)^(1/sqrt(t));
for n2 = 1:N-1
s{1,n2} = s{1,n2}+S{1,n2}(k,1)^(1/sqrt(t))*f(:,n2);
end
end
SUM_N = 0;
for n3 = 1:N
if n3 < N
b(t,n3) = s{1,n3}/s{1,N};
SUM_N = SUM_N+s{1,n3};
else
b(t,n3) = (s{1,N}-SUM_N)/s{1,N};
end
end
b_h(t-1,:)=data(t-1,:).*b(t-1,:);
b_hat(t-1,:)=b_h(t-1,:)/sum(b_h(t-1,:));
diff(t,:)=sum(abs(b(t,:)-b_hat(t-1,:)));
daily_return(t) = (data(t,:)*b(t,:)'*(1-(tc)*diff(t,:)));
end
end
total_return = cumprod(daily_return);