-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
81 lines (62 loc) · 2.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
from torch.utils.data import DataLoader
from common.args import parse_args
from common.utils import InfiniteSampler, get_optimizer, load_model
from data.dataset import get_dataset
from models.model import get_model
from train.trainer import meta_trainer
from utils import Logger, set_random_seed
def main(rank, P):
P.rank = rank
""" set torch device"""
if torch.cuda.is_available():
torch.cuda.set_device(P.rank)
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
""" fixing randomness """
set_random_seed(P.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
""" define dataset """
train_set, test_set = get_dataset(P, dataset=P.dataset)
""" define dataloader """
kwargs = {'pin_memory': True, 'num_workers': 0}
train_sampler = InfiniteSampler(train_set, rank=rank, num_replicas=1, shuffle=True, seed=P.seed)
train_loader = DataLoader(train_set, sampler=train_sampler, batch_size=P.batch_size, num_workers=4, prefetch_factor=2)
test_loader = DataLoader(test_set, shuffle=False, batch_size=P.test_batch_size, **kwargs)
""" Initialize model, optimizer """
model = get_model(P).to(device)
optimizer = get_optimizer(P, model)
""" define train and test type """
from train import setup as train_setup
from evals import setup as test_setup
train_func, fname, today = train_setup(P.mode, P)
test_func = test_setup(P.mode, P)
""" define logger """
logger = Logger(fname, ask=P.resume_path is None, today=today, rank=P.rank)
logger.log(P)
logger.log(model)
""" load model if necessary """
load_model(P, model, logger)
""" apply data parrallel for multi-gpu training """
if P.data_parallel:
raise NotImplementedError() # Currently having some error with DP
""" train """
meta_trainer(P, train_func, test_func, model, optimizer, train_loader, test_loader, logger)
""" close tensorboard """
logger.close_writer()
if __name__ == "__main__":
""" argument define """
P = parse_args()
P.world_size = torch.cuda.device_count()
P.data_parallel = P.world_size > 1
# We use data parallel (DP) rather than distributed data parallel (DDP)
# Currently, Meta-learning with DDP cause a problem, see below issues:
# https://github.com/pytorch/pytorch/issues/47562
# https://github.com/pytorch/pytorch/issues/48531
# https://github.com/pytorch/pytorch/issues/63812
# if P.distributed:
# os.environ["MASTER_ADDR"] = 'localhost'
# os.environ["MASTER_PORT"] = P.port
# mp.spawn(main, nprocs=P.world_size, args=(P,))
# else:
main(0, P)