forked from qfettes/DeepRL-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_devel.py
117 lines (91 loc) · 3.25 KB
/
dqn_devel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gym
import numpy as np
from timeit import default_timer as timer
from datetime import timedelta
import math
import glob
from utils.wrappers import *
from utils.hyperparameters import Config
from agents.DQN import Model
from utils.plot import plot_all_data
config = Config()
#algorithm control
config.USE_NOISY_NETS = False
config.USE_PRIORITY_REPLAY = False
#Multi-step returns
config.N_STEPS = 1
#epsilon variables
config.epsilon_start = 1.0
config.epsilon_final = 0.01
config.epsilon_decay = 30000
config.epsilon_by_frame = lambda frame_idx: config.epsilon_final + (config.epsilon_start - config.epsilon_final) * math.exp(-1. * frame_idx / config.epsilon_decay)
#misc agent variables
config.GAMMA = 0.99
config.LR = 1e-4
#memory
config.TARGET_NET_UPDATE_FREQ = 1000
config.EXP_REPLAY_SIZE = 100000
config.BATCH_SIZE = 32
config.PRIORITY_ALPHA = 0.6
config.PRIORITY_BETA_START = 0.4
config.PRIORITY_BETA_FRAMES = 100000
#Noisy Nets
config.SIGMA_INIT = 0.5
#Learning control variables
config.LEARN_START = 10000
config.MAX_FRAMES = 1000000
config.UPDATE_FREQ = 1
#Categorical Params
config.ATOMS = 51
config.V_MAX = 50
config.V_MIN = 0
#Quantile Regression Parameters
config.QUANTILES = 21
#DRQN Parameters
config.SEQUENCE_LENGTH = 8
#data logging parameters
config.ACTION_SELECTION_COUNT_FREQUENCY = 1000
if __name__=='__main__':
start=timer()
log_dir = "/tmp/gym/"
try:
os.makedirs(log_dir)
except OSError:
files = glob.glob(os.path.join(log_dir, '*.monitor.csv')) \
+ glob.glob(os.path.join(log_dir, '*td.csv')) \
+ glob.glob(os.path.join(log_dir, '*sig_param_mag.csv')) \
+ glob.glob(os.path.join(log_dir, '*action_log.csv'))
for f in files:
os.remove(f)
env_id = "PongNoFrameskip-v4"
env = make_atari(env_id)
env = bench.Monitor(env, os.path.join(log_dir, env_id))
env = wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=True)
env = WrapPyTorch(env)
model = Model(env=env, config=config, log_dir=log_dir)
episode_reward = 0
observation = env.reset()
for frame_idx in range(1, config.MAX_FRAMES + 1):
epsilon = config.epsilon_by_frame(frame_idx)
action = model.get_action(observation, epsilon)
model.save_action(action, frame_idx) #log action selection
prev_observation=observation
observation, reward, done, _ = env.step(action)
observation = None if done else observation
model.update(prev_observation, action, reward, observation, frame_idx)
episode_reward += reward
if done:
model.finish_nstep()
model.reset_hx()
observation = env.reset()
model.save_reward(episode_reward)
episode_reward = 0
if frame_idx % 10000 == 0:
model.save_w()
try:
print('frame %s. time: %s' % (frame_idx, timedelta(seconds=int(timer()-start))))
plot_all_data(log_dir, env_id, 'DRQN', config.MAX_FRAMES, bin_size=(10, 100, 100, 1), smooth=1, time=timedelta(seconds=int(timer()-start)), ipynb=False)
except IOError:
pass
model.save_w()
env.close()