-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_defense_model_defensemodel.py
93 lines (74 loc) · 3.18 KB
/
train_defense_model_defensemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
np.random.seed(1000)
import imp
import input_data_class
import keras
from keras.models import Model
from keras.backend.tensorflow_backend import set_session
from keras import backend as K
import tensorflow as tf
import os
import configparser
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-dataset',default='location')
args = parser.parse_args()
dataset=args.dataset
input_data=input_data_class.InputData(dataset=dataset)
config = configparser.ConfigParser()
config.read('config.ini')
user_label_dim=int(config[dataset]["num_classes"])
num_classes=1
save_model=True
defense_epochs=int(config[dataset]["defense_epochs"])
user_epochs=int(config[dataset]["user_epochs"])
batch_size=int(config[dataset]["defense_batch_size"])
#defense_train_testing_ratio=float(config[dataset]["defense_training_ratio"])
result_folder=config[dataset]["result_folder"]
network_architecture=str(config[dataset]["network_architecture"])
fccnet=imp.load_source(str(config[dataset]["network_name"]),network_architecture)
config_gpu = tf.ConfigProto()
config_gpu.gpu_options.per_process_gpu_memory_fraction = 0.5
config_gpu.gpu_options.visible_device_list = "0"
set_session(tf.Session(config=config_gpu))
(x_train,y_train,l_train) =input_data.input_data_defender()
y_train=keras.utils.to_categorical(y_train,user_label_dim)
####load target model
npzdata=np.load(result_folder+"/models/"+"epoch_{}_weights_user.npz".format(user_epochs))
weights=npzdata['x']
input_shape=x_train.shape[1:]
model=fccnet.model_user(input_shape=input_shape,labels_dim=user_label_dim)
model.compile(loss=keras.losses.categorical_crossentropy,optimizer=keras.optimizers.SGD(lr=0.01),metrics=['accuracy'])
model.set_weights(weights)
########obtain confidence score on defender's training dataset
f_train=model.predict(x_train)
del model
#######sort the confidence score
f_train=np.sort(f_train,axis=1)
input_shape=y_train.shape[1:]
model=fccnet.model_defense(input_shape=input_shape,labels_dim=num_classes)
model.compile(loss=keras.losses.binary_crossentropy,optimizer=keras.optimizers.SGD(lr=0.001),metrics=['accuracy'])
model.summary()
b_train=f_train[:,:]
label_train=l_train[:]
index_array=np.arange(b_train.shape[0])
batch_num=np.int(np.ceil(b_train.shape[0]/batch_size))
for i in np.arange(defense_epochs):
np.random.shuffle(index_array)
for j in np.arange(batch_num):
b_batch=b_train[index_array[(j%batch_num)*batch_size:min((j%batch_num+1)*batch_size,b_train.shape[0])],:]
y_batch=label_train[index_array[(j%batch_num)*batch_size:min((j%batch_num+1)*batch_size,label_train.shape[0])]]
model.train_on_batch(b_batch,y_batch)
if (i+1)%100==0:
print("Epochs: {}".format(i))
scores_train = model.evaluate(b_train, label_train, verbose=0)
print('Train loss:', scores_train[0])
print('Train accuracy:', scores_train[1])
#save the defense model
if save_model:
weights=model.get_weights()
if not os.path.exists(result_folder):
os.makedirs(result_folder)
if not os.path.exists(result_folder+"/models"):
os.makedirs(result_folder+"/models")
np.savez(result_folder+"/models/"+"epoch_{}_weights_defense.npz".format(defense_epochs),x=weights)