-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathspatial_temporal_attention_network.py
192 lines (160 loc) · 7.24 KB
/
spatial_temporal_attention_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from keras.layers import Input,TimeDistributed,LSTM,Bidirectional
from keras.layers.core import Lambda,Flatten,Dense,Reshape,Activation,Lambda,Permute
from keras.layers.convolutional import Conv2D,UpSampling2D,Conv1D
from keras.layers.pooling import MaxPooling2D, AveragePooling1D,AveragePooling2D
from keras.layers.merge import Add,Concatenate,Dot,Multiply
from keras.regularizers import l2
from keras.optimizers import SGD,Adam
from keras.models import Model
from keras import backend as K
from keras.applications.resnet50 import ResNet50
train_classes = 314
def focal_loss(target, output, gamma=2):
output /= K.sum(output, axis=-1, keepdims=True)
eps = K.epsilon()
output = K.clip(output, eps, 1. - eps)
return -K.sum(K.pow(1. - output, gamma) * target * K.log(output),
axis=-1)
def generate_model(weight_decay=0.0005):
# spatial attention network
merged_input = Input(shape=(224, 224, 6))
split1 = Lambda(lambda x: x[:, :, :, 0:3], name='split1')
split2 = Lambda(lambda x: x[:, :, :, 3:], name='split2')
data1 = split1(merged_input)
data2 = split2(merged_input)
base_model = ResNet50(weights=None, include_top=False) # weights=None for test, weights='iamgenet' for train
share_conv_1 = Model(input=base_model.input, output=base_model.get_layer('activation_49').output)
x1 = share_conv_1(data1)
x2 = share_conv_1(data2)
reshape1 = Reshape((49, 2048))
x1 = reshape1(x1)
x2 = reshape1(x2)
l2_norm_channel = Lambda(lambda x: K.l2_normalize(x,axis=-1))
x1_l2 = l2_norm_channel(x1)
x2_l2 = l2_norm_channel(x2)
x2_l2 = Permute((2, 1))(x2_l2)
matrix_dot = Lambda(lambda x: K.batch_dot(x[0], x[1]))
x_com = matrix_dot([x1_l2, x2_l2])
x_com_T = Permute((2, 1))(x_com)
share_conv_2 = Conv1D(1, 1, padding="same", kernel_regularizer=l2(weight_decay))
x1_att = share_conv_2(x_com)
x2_att = share_conv_2(x_com_T)
reshape2 = Reshape((49,))
x1_att = reshape2(x1_att)
x2_att = reshape2(x2_att)
softmax = Activation('softmax')
x1_att = softmax(x1_att)
x2_att = softmax(x2_att)
reshape3 = Reshape((49, 1))
x1_att = reshape3(x1_att)
x2_att = reshape3(x2_att)
h1 = Multiply()([x1, x1_att])
h2 = Multiply()([x2, x2_att])
summary = Lambda(lambda x: K.sum(x, axis=1))
h1 = summary(h1)
h2 = summary(h2)
id_layer = Dense(train_classes, kernel_regularizer=l2(weight_decay), activation='softmax')
y1 = id_layer(h1)
y2 = id_layer(h2)
x_concat = Concatenate()([h1, h2])
x_concat = Dense(512, kernel_regularizer=l2(weight_decay), activation='relu')(x_concat)
spatial_model = Model(inputs=merged_input, outputs=[y1, y2, x_concat]) # spatial attention model
spatial_model.summary()
#spatial_model.load_weights('/media/tensend/dish_disk/MOT_keras/weights_spatial_dot_softmax/my_weights_on_mot16_0_0_15.h5', by_name=True) # fix the weights of the spatial attention network to train the temporal attention network
for layer in spatial_model.layers[:]:
layer.trainable = False
spatial_model.layers[-2].trainable = True
print spatial_model.layers[-2].name
# temporal attention network
time_steps = 8
seq_merged_input = Input(shape=(time_steps, 224, 224, 6))
ST_outputs = []
for i in range(2):
ST_outputs.append(TimeDistributed(Model(spatial_model.input, spatial_model.output[i]))(seq_merged_input))
lstm_input = TimeDistributed(Model(spatial_model.input, spatial_model.output[2]))(seq_merged_input)
temporal_model = Bidirectional(LSTM(512, kernel_regularizer=l2(weight_decay), recurrent_regularizer=l2(weight_decay), return_sequences=True))(lstm_input)
beta = TimeDistributed(Dense(1, kernel_regularizer=l2(weight_decay)))(temporal_model)
beta = Reshape((time_steps,))(beta)
beta = Activation('softmax')(beta)
beta = Reshape((time_steps, 1))(beta)
weighted_output = Multiply()([temporal_model, beta])
summary = Lambda(lambda x: K.sum(x, 1))
h = summary(weighted_output)
yf = Dense(2, kernel_regularizer=l2(weight_decay), activation='softmax')(h)
ST_outputs.append(yf)
ST_model = Model(inputs=seq_merged_input, outputs=ST_outputs)
ST_model.summary()
return ST_model
def compile_model(model, *args, **kw):
class SGD_new(SGD):
'''
redefinition of the original SGD
'''
def __init__(self, lr=0.01, momentum=0., decay=0.,
nesterov=False, **kwargs):
super(SGD, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable(0.)
self.lr = K.variable(lr)
self.momentum = K.variable(momentum)
self.decay = K.variable(decay)
self.inital_decay = decay
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = []
lr = self.lr
if self.inital_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations)) ** 0.75
self.updates .append(K.update_add(self.iterations, 1))
# momentum
shapes = [K.get_variable_shape(p) for p in params]
moments = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + moments
for p, g, m in zip(params, grads, moments):
v = self.momentum * m - lr * g # velocity
self.updates.append(K.update(m, v))
if self.nesterov:
new_p = p + self.momentum * v - lr * g
else:
new_p = p + v
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
all_classes = {
'sgd_new': 'SGD_new(lr=0.01, momentum=0.9)',
'sgd': 'SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False)',
'rmsprop': 'RMSprop(lr=0.0001, rho=0.9, epsilon=1e-06)',
'adagrad': 'Adagrad(lr=0.01, epsilon=1e-06)',
'adadelta': 'Adadelta(lr=1.0, rho=0.95, epsilon=1e-06)',
'adam': 'Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)',
'adamax': 'Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08)',
'nadam': 'Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)',
}
param = {'optimizer': 'adam', 'loss': 'categorical_crossentropy', 'metrics': 'accuracy'}
config = ''
if len(kw):
for (key, value) in kw.items():
if key in param:
param[key] = kw[key]
elif key in all_classes:
config = kw[key]
else:
print 'error'
if not len(config):
config = all_classes[param['optimizer']]
optimiz = eval(config)
model.compile(optimizer=optimiz,
loss=['categorical_crossentropy', 'categorical_crossentropy', focal_loss],
loss_weights=[0.5, 0.5, 1.0],
metrics=['accuracy'])
print("Model Compile Successful.")
return model
if __name__ == "__main__":
"""
Just for model testing.
"""
model = generate_model()
model = compile_model(model)