-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvignette.Rmd.orig
332 lines (247 loc) · 11.5 KB
/
vignette.Rmd.orig
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
---
title: "Solving Real World Issues With RCzechia"
author: "Jindra Lacko"
date: "`r Sys.Date()`"
output:
rmarkdown::html_vignette:
toc: true
self_contained: no
vignette: >
%\VignetteIndexEntry{Solving Real World Issues With RCzechia}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(collapse = T,
fig.align="center",
dpi = 150,
out.width = "100%",
fig.width = 8,
fig.height = 4,
fig.path = "./")
library(httr)
library(roxygen2)
```
### Visualizing Czech Population
Population of the Czech Republic from the 2011 census, per district (okres). The results can be easily accessed from the comfort of your R session using the excellent package [{czso}](https://petrbouchal.xyz/czso/) by Petr Bouchal.
As the population distributed highly unevenly a log scale is used.
```{r census, echo = T, eval = T, message = F}
library(RCzechia)
library(ggplot2)
library(readxl)
library(dplyr)
library(httr)
tf <- tempfile(fileext = ".xls") # a temporary xls file
GET("https://raw.githubusercontent.com/jlacko/RCzechia/master/data-raw/zvcr034.xls",
write_disk(tf))
src <- read_excel(tf, range = "Data!B5:C97") # read in with original column names
colnames(src) <- c("NAZ_LAU1", "obyvatel") # meaningful names instead of the original ones
src <- src %>%
mutate(obyvatel = as.double(obyvatel)) %>%
# convert from text to number
mutate(NAZ_LAU1 = ifelse(NAZ_LAU1 == "Hlavní město Praha", "Praha", NAZ_LAU1))
# rename Prague (from The Capital to a regular city)
okresni_data <- RCzechia::okresy("low") %>% # data shapefile
inner_join(src, by = "NAZ_LAU1")
# key for data connection - note the use of inner (i.e. filtering) join
# report results
ggplot(data = okresni_data) +
geom_sf(aes(fill = obyvatel), colour = NA) +
geom_sf(data = RCzechia::republika("low"), color = "gray30", fill = NA) +
scale_fill_viridis_c(trans = "log", labels = scales::comma) +
labs(title = "Czech population",
fill = "population\n(log scale)") +
theme_bw() +
theme(legend.text = element_text(hjust = 1),
legend.title = element_text(hjust = 0.5))
```
## Geocoding Locations & Drawing them on a Map
Drawing a map: three semi-random landmarks on map, with rivers shown for better orientation.
To get the geocoded data frame function `RCzechia::geocode()` is used.
```{r geocode, echo = T, eval = T, message = F, warning = F,fig.width = 8, fig.height = 5}
library(RCzechia)
library(ggplot2)
library(sf)
borders <- RCzechia::republika("low")
rivers <- subset(RCzechia::reky(), Major == T)
mista <- data.frame(misto = c("Kramářova vila",
"Arcibiskupské zahrady v Kroměříži",
"Hrad Bečov nad Teplou"),
adresa = c("Gogolova 212, Praha 1",
"Sněmovní náměstí 1, Kroměříž",
"nám. 5. května 1, Bečov nad Teplou"))
# from a string vector to sf spatial points object
POI <- RCzechia::geocode(mista$adresa)
class(POI) # in {sf} package format = spatial and data frame
# report results
ggplot() +
geom_sf(data = POI, color = "red", shape = 4, size = 2) +
geom_sf(data = rivers, color = "steelblue", alpha = 0.5) +
geom_sf(data = borders, color = "grey30", fill = NA) +
labs(title = "Very Special Places") +
theme_bw()
```
## Distance Between Prague and Brno
Calculate distance between two spatial objects; the `sf` package supports (via gdal) point to point, point to polygon and polygon to polygon distances.
Calculating distance from Prague (#1 Czech city) to Brno (#2 Czech city).
```{r distance, echo = T, eval = T, message = F}
library(dplyr)
library(RCzechia)
library(sf)
library(units)
obce <- RCzechia::obce_polygony()
praha <- subset(obce, NAZ_OBEC == "Praha")
brno <- subset(obce, NAZ_OBEC == "Brno")
vzdalenost <- sf::st_distance(praha, brno) %>%
units::set_units("kilometers") # easier to interpret than meters, miles or decimal degrees..
# report results
print(vzdalenost[1])
```
## Geographical Center of the City of Brno
The *metaphysical* center of the Brno City is [well known](https://en.wikipedia.org/wiki/Brno_astronomical_clock). But where is the geographical center?
The center is calculated using `sf::st_centroid()` and reversely geocoded via `RCzechia::revgeo()`.
Note the use of `reky("Brno")` to provide the parts of Svitava and Svratka relevant to a map of Brno city.
```{r brno-center, echo = T, eval = T, message = F, warning = F, fig.width = 6, fig.height = 6}
library(dplyr)
library(RCzechia)
library(ggplot2)
library(sf)
# all districts
brno <- RCzechia::okresy() %>%
dplyr::filter(KOD_LAU1 == "CZ0642")
# calculate centroid
pupek_brna <- brno %>%
sf::st_transform(5514) %>% # planar CRS (eastings & northings)
sf::st_centroid(brno) # calculate central point of a polygon
# the revgeo() function takes a sf points data frame and returns it back
# with address data in "revgeocoded" column
adresa_pupku <- RCzechia::revgeo(pupek_brna) %>%
pull(revgeocoded)
# report results
print(adresa_pupku)
ggplot() +
geom_sf(data = pupek_brna, col = "red", shape = 4) +
geom_sf(data = reky("Brno"), color = "skyblue3") +
geom_sf(data = brno, color = "grey50", fill = NA) +
labs(title = "Geographical Center of Brno") +
theme_bw()
```
## Interactive Map
Interactive maps are powerful tools for data visualization. They are easy to produce with the `leaflet` package.
Since Stamen Toner basemap no longer sparkles joy I have found a new favorite - the [Positron by CartoDB](https://carto.com/blog/getting-to-know-positron-and-dark-matter).
*Note*: it is technically impossible to make html in vignette interactive (and for good reasons). As a consequence the result of code shown has been replaced by a static screenshot; the code itself is legit.
```{r interactive, eval = F}
library(dplyr)
library(RCzechia)
library(leaflet)
library(czso)
# map metrics - number of unemployed in October 2020
metrika <- czso::czso_get_table("250169r20") %>%
filter(obdobi == "20201031" & vuk == "NEZ0004")
podklad <- RCzechia::obce_polygony() %>% # obce_polygony = municipalities in RCzechia package
inner_join(metrika, by = c("KOD_OBEC" = "uzemi_kod")) %>% # linking by key
filter(KOD_CZNUTS3 == "CZ071") # Olomoucký kraj
pal <- colorNumeric(palette = "viridis", domain = podklad$hodnota)
leaflet() %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(data = podklad,
fillColor = ~pal(hodnota),
fillOpacity = 0.75,
color = NA)
```
<p align="center">
<img src="https://raw.githubusercontent.com/jlacko/RCzechia/master/data-raw/interactive-screenshot.png" alt="This is just a screenshot of the visualization, so it's not interactive. You can play with the interactive version by running the code shown.">
</p>
## KFME Grid Cells
The Kartierung der Flora Mitteleuropas (KFME) grid is a commonly used technique in biogeography of the Central Europe. It uses a grid of 10×6 arc-minutes (in Central European latitudes this translates to near squares), with cells numbered from north to south and west to east.
A selection of the grid cells relevant for faunistical mapping of the Czech Republic is available in the RCzechia package.
This example covers a frequent use case:
* geocoding a location (via `RCzechia::geocode()`)
* assigning it to a KFME grid cell (spatial join via `sf::st_join`)
* plotting the outcome – both as a grid cell and exact location – on a map
```{r ctverce, echo = T, eval = T, message = F, warning = F,fig.width = 8, fig.height = 5}
library(RCzechia)
library(ggplot2)
library(dplyr)
library(sf)
obec <- "Humpolec" # a Czech location, as a string
# geolocate the place
place <- RCzechia::geocode(obec) %>%
filter(type == "Obec")
class(place) # a spatial data frame
# ID of the KFME square containg place geocoded (via spatial join)
ctverec_id <- sf::st_join(RCzechia::KFME_grid(),
place, left = FALSE) %>% # not left = inner (filtering) join
pull(ctverec)
print(paste0("Location found in grid cell number ", ctverec_id, "."))
# a single KFME square to be highlighted as a polygon
highlighted_cell <- KFME_grid() %>%
filter(ctverec == ctverec_id)
# report results
ggplot() +
geom_sf(data = RCzechia::republika(), size = .85) + # Czech borders
geom_sf(data = highlighted_cell, # a specific KFME cell ...
fill = "limegreen", alpha = .5) + # ... highlighted in lime green
geom_sf(data = KFME_grid(), size = .33, # all KFME grid cells, thin
color = "gray80", fill = NA) + # in gray and without fill
geom_sf(data = place, color = "red", pch = 4) + # X marks the spot!
labs(title = paste("Location", obec, "in grid cell number", ctverec_id)) +
theme_bw()
```
## Terrain of the Czech Republic
Understanding the lay of the land is important in many use cases in physical sciences; one of them is interpreting the flow of rivers.
Visualizing the slope & height of terrain is an important first step in understanding it.
Package RCzechia supports two versions of relief visualization:
* actual elevation model (meters above sea level)
* shaded relief
This example covers the first option.
```{r relief, echo = T, eval = T, message = F, warning = F,fig.width = 8, fig.height = 5}
library(RCzechia)
library(ggplot2)
library(terra)
library(tidyterra)
library(dplyr)
# terrain cropped to "Czechia proper"
relief <- vyskopis("rayshaded", cropped = TRUE)
# report results
ggplot() +
tidyterra::geom_spatraster(data = relief) +
scale_fill_gradientn(colors = hcl.colors(50, "Grays"), # 50 shades of Gray...
na.value = NA,
guide = "none") +
geom_sf(data = subset(RCzechia::reky(), Major == T), # major rivers
color = "steelblue", alpha = .5) +
labs(title = "Czech Rivers & Their Basins",
fill = "Altitude") +
theme_bw() +
theme(axis.title = element_blank(),
legend.text.align = 1,
legend.title.align = 0.5)
```
## Senate Elections of 2020
Visualizing election results is one of typical use cases of the RCzechia package.
This example uses [`{rvest}`](https://rvest.tidyverse.org/) to scrape the official table of results of the 2020 fall Senate elections from the official site of the Czech Statistical Office, and display a map of the party affiliation of the elected senator.
Since not all districts were up for election in this cycle two thirds of the map contain NA's; that is expected behavior (the Czech senate elections are staggered, like in the US).
```{r senat, echo = T, eval = T, message = F, warning = F}
library(RCzechia)
library(ggplot2)
library(dplyr)
library(rvest)
# official result of elections from Czech Statistical Office
vysledky <- "https://www.volby.cz/pls/senat/se1111?xjazyk=CZ&xdatum=20201002&xv=7&xt=2" %>%
xml2::read_html() %>% # because rvest::html is deprecated
html_nodes(xpath = "//*[@id=\"se1111_t1\"]") %>% # get the table by its xpath
html_table(fill = T) %>%
.[[1]] %>%
dplyr::select(OBVOD = Obvod, strana = `Volebnístrana`) %>%
# pad OBVOD with zero to 2 places to align to RCzechia data format
mutate(OBVOD = stringr::str_pad(OBVOD, 2, side = "left", pad = "0"))
podklad <- RCzechia::senat_obvody("low") %>%
# match by key; left to preserve geometry of off cycle districts (NAs)
left_join(vysledky, by = "OBVOD")
ggplot() +
geom_sf(data = RCzechia::republika(), size = .85) + # Czech borders
geom_sf(data = podklad, aes(fill = strana)) +
labs(title = "Senate elections 2020") +
theme_bw()
```