forked from yqueau/normal_integration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_3_discontinuities.m
367 lines (319 loc) · 9.88 KB
/
demo_3_discontinuities.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
clear
close all
addpath('Toolbox/');
% Tested methods
test_TV = 1; % Total variation
test_NC = 1; % Non-convex
test_AD = 1; % Anisotropic diffusion
test_MS = 1; % Mumford-Shah
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load a dataset containing:
% -- p (nrows x ncols) : gradient in the u- (bottom) direction
% -- q (nrows x ncols) : gradient in the v- (right) direction
% -- u (nrows x ncols) : ground truth depth map
% -- mask (nrows x ncols) : mask of the pixels on the vase (binary)
load Datasets/vase
% In this test we assume no mask is given, so discontinuities around the border should be recovered automatically
mask = ones(size(p));
indices_mask = find(mask>0);
% Add zero-mean, Gaussian noise
std_noise = 0.005*max(sqrt(p(indices_mask).^2+q(indices_mask).^2));
p = p+std_noise*randn(size(p));
q = q+std_noise*randn(size(q));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Quadratic Integration
disp('Doing quadratic integration');
lambda = 1e-6*ones(size(p)); % Uniform field of weights (nrows x ncols)
z0 = zeros(size(p)); % Null depth prior (nrows x ncols)
solver = 'pcg'; % Solver ('pcg' means conjugate gradient, 'direct' means backslash i.e. sparse Cholesky)
precond = 'CMG'; % Preconditioner for smooth integration ('none' means no preconditioning, 'ichol' means incomplete Cholesky, 'CMG' means conjugate combinatorial multigrid -- the latter is fastest, but it need being installed, see README)
t_1 = tic;
z_1 = smooth_integration(p,q,mask,lambda,z0,solver,precond);
t_1 = toc(t_1);
% Find the integration constant which minimizes RMSE
lambda_1 = -mean(z_1(indices_mask)-u(indices_mask));
z_1 = z_1+lambda_1;
% Calculate RMSE
RMSE_1 = sqrt(mean((z_1(indices_mask)-u(indices_mask)).^2));
% Display evaluation results in terminal
disp('=============================');
disp('Quadratic integration:');
disp(sprintf('CPU: %.4f',t_1));
disp(sprintf('RMSE: %.2f',RMSE_1));
disp(' ');
if(test_TV)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TV Integration
disp('Doing TV integration');
zinit = z_1; % least-squares initialization
alpha = 0.1; % Descent stepsize (influences speed)
tol = 1e-5; % Stopping criterion
maxit = 1000; % Stopping criterion
t_2 = tic;
z_2 = tv_integration(p,q,mask,lambda,z0,alpha,maxit,tol,zinit);
t_2 = toc(t_2);
% Find the integration constant which minimizes RMSE
lambda_2 = -mean(z_2(indices_mask)-u(indices_mask));
z_2 = z_2+lambda_2;
% Calculate RMSE
RMSE_2 = sqrt(mean((z_2(indices_mask)-u(indices_mask)).^2));
% Display evaluation results in terminal
disp('=============================');
disp('TV integration:');
disp(sprintf('CPU: %.4f',t_2));
disp(sprintf('RMSE: %.2f',RMSE_2));
disp(' ');
end
if(test_NC)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Nonconvex Integration
disp('Doing nonconvex integration');
zinit = z_1; % least-squares initialization
gamma = 0.5; % Nonconvex estimator parameter (to be tuned: e.g. 0.5 for phi1, 1 for phi2 in our tests)
beta = 0.8; % Lischitz reduction constant (must be in (0,1), see iPiano paper, 0.8 seems to always work)
maxit = 1000; % Stopping criterion
tol = 1e-5; % Stopping criterion
t_3 = tic;
z_3 = phi1_integration(p,q,mask,lambda,z0,beta,gamma,maxit,tol,zinit,u); % Phi_1 estimator
% z_3 = phi2_integration(p,q,mask,lambda,z0,beta,gamma,maxit,tol,zinit,u);% Phi_2 estimator
t_3 = toc(t_3);
% Find the integration constant which minimizes RMSE
lambda_3 = -mean(z_3(indices_mask)-u(indices_mask));
z_3 = z_3+lambda_3;
% Calculate RMSE
RMSE_3 = sqrt(mean((z_3(indices_mask)-u(indices_mask)).^2));
% Display evaluation results in terminal
disp('=============================');
disp('Nonconvex integration:');
disp(sprintf('CPU: %.4f',t_3));
disp(sprintf('RMSE: %.2f',RMSE_3));
disp(' ');
end
if(test_AD)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Anisotropic diffusion ontegration
disp('Doing anis diff integration');
zinit = z_1; % least-squares initialization
mu = 0.2; % anis diff (to be tuned)
nu = 10; % anis diff param (10 should work)
maxit = 20; % Stopping criterion
tol = 1e-5; % Stopping criterion
t_4 = tic;
z_4 = anisotropic_diffusion_integration(p,q,mask,lambda,z0,mu,nu,maxit,tol,zinit);
t_4 = toc(t_4);
% Find the integration constant which minimizes RMSE
lambda_4 = -mean(z_4(indices_mask)-u(indices_mask));
z_4 = z_4+lambda_4;
% Calculate RMSE
RMSE_4 = sqrt(mean((z_4(indices_mask)-u(indices_mask)).^2));
% Display evaluation results in terminal
disp('=============================');
disp('Anis diff integration:');
disp(sprintf('CPU: %.4f',t_4));
disp(sprintf('RMSE: %.2f',RMSE_4));
disp(' ');
end
if(test_MS)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Mumford-Shah ontegration
disp('Doing Mumford-Shah integration');
zinit = z_1; % least-squares initialization
mu = 45; % Regularization weight for discontinuity set
epsilon = 0.01; % Should be close to 0
tol = 1e-5; % Stopping criterion
maxit = 1000; % Stopping criterion
t_5 = tic;
z_5 = mumford_shah_integration(p,q,mask,lambda,z0,mu,epsilon,maxit,tol,zinit);
t_5 = toc(t_5);
% Find the integration constant which minimizes RMSE
lambda_5 = -mean(z_5(indices_mask)-u(indices_mask));
z_5 = z_5+lambda_5;
% Calculate RMSE
RMSE_5 = sqrt(mean((z_5(indices_mask)-u(indices_mask)).^2));
% Display evaluation results in terminal
disp('=============================');
disp('Mumford-Shah integration:');
disp(sprintf('CPU: %.4f',t_5));
disp(sprintf('RMSE: %.2f',RMSE_5));
disp(' ');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Summarize results
disp(' ');
disp(' ');
disp(' ');
disp('=============================');
disp('=============================');
disp('Summary of the evaluation:');
disp('=============================');
disp('=============================');
disp('Quadratic integration:');
disp(sprintf('CPU: %.4f',t_1));
disp(sprintf('RMSE: %.2f',RMSE_1));
disp(' ');
if(test_TV)
% Display evaluation results in terminal
disp('=============================');
disp('TV integration:');
disp(sprintf('CPU: %.4f',t_2));
disp(sprintf('RMSE: %.2f',RMSE_2));
disp(' ');
end
if(test_NC)
% Display evaluation results in terminal
disp('=============================');
disp('Nonconvex integration:');
disp(sprintf('CPU: %.4f',t_3));
disp(sprintf('RMSE: %.2f',RMSE_3));
disp(' ');
end
if(test_AD)
% Display evaluation results in terminal
disp('=============================');
disp('Anis diff integration:');
disp(sprintf('CPU: %.4f',t_4));
disp(sprintf('RMSE: %.2f',RMSE_4));
disp(' ');
end
if(test_MS)
% Display evaluation results in terminal
disp('=============================');
disp('Mumford-Shah integration:');
disp(sprintf('CPU: %.4f',t_5));
disp(sprintf('RMSE: %.2f',RMSE_5));
disp(' ');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Display a few things
figure('units','normalized','outerposition',[0 0 1 1])
% Input data: p, q and mask
subplot(4,4,1)
imagesc(p);
axis image
axis off
title('$$p$$','Interpreter','Latex','Fontsize',14)
subplot(4,4,2)
imagesc(q);
axis image
axis off
title('$$q$$','Interpreter','Latex','Fontsize',14)
subplot(4,4,3)
imagesc(mask);
axis image
axis off
colormap gray
title('$$\Omega$$','Interpreter','Latex','Fontsize',14)
subplot(4,4,4)
surfl(u,[-135 30]);
view(-35,20)
axis ij;
shading flat;
colormap gray;
axis equal;
grid off
axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
axis off
title('Ground truth depth','Interpreter','Latex','Fontsize',14)
subplot(4,4,5)
surfl(z_1,[-135 30]);
view(-35,20)
axis ij;
shading flat;
colormap gray;
axis equal;
grid off
axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
axis off
title('Quadratic integration','Interpreter','Latex','Fontsize',14)
error_map_1 = abs(u-z_1);
error_map_1(mask==0) = NaN;
subplot(4,4,6)
imagesc(error_map_1,[0 10]);
axis image
axis off
colormap gray
title('Absolute error (quadratic integration)','Interpreter','Latex','Fontsize',14)
if(test_TV)
subplot(4,4,7)
surfl(z_2,[-135 30]);
view(-35,20)
axis ij;
shading flat;
colormap gray;
axis equal;
grid off
axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
axis off
title('TV integration','Interpreter','Latex','Fontsize',14)
error_map_2 = abs(u-z_2);
error_map_2(mask==0) = NaN;
subplot(4,4,8)
imagesc(error_map_2,[0 10]);
axis image
axis off
colormap gray
title('Absolute error (TV integration)','Interpreter','Latex','Fontsize',14)
end
if(test_NC)
subplot(4,4,9)
surfl(z_3,[-135 30]);
view(-35,20)
axis ij;
shading flat;
colormap gray;
axis equal;
grid off
axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
axis off
title('Nonconvex integration','Interpreter','Latex','Fontsize',14)
error_map_3 = abs(u-z_3);
error_map_3(mask==0) = NaN;
subplot(4,4,10)
imagesc(error_map_3,[0 10]);
axis image
axis off
colormap gray
title('Absolute error (nonconvex integration)','Interpreter','Latex','Fontsize',14)
end
if(test_AD)
subplot(4,4,11)
surfl(z_4,[-135 30]);
view(-35,20)
axis ij;
shading flat;
colormap gray;
axis equal;
grid off
axis off
axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
title('Anis diff integration','Interpreter','Latex','Fontsize',14)
error_map_4 = abs(u-z_4);
error_map_4(mask==0) = NaN;
subplot(4,4,12)
imagesc(error_map_4,[0 10]);
axis image
axis off
colormap gray
title('Absolute error (anis diff integration)','Interpreter','Latex','Fontsize',14)
end
if(test_MS)
subplot(4,4,13)
surfl(z_5,[-135 30]);
view(-35,20)
axis ij;
shading flat;
colormap gray;
axis equal;
grid off
axis([1 size(p,1) 1 size(p,2) min(u(:)) max(u(:))]);
axis off
title('Mumford-Shah integration','Interpreter','Latex','Fontsize',14)
error_map_5 = abs(u-z_5);
error_map_5(mask==0) = NaN;
subplot(4,4,14)
imagesc(error_map_5,[0 10]);
axis image
axis off
colormap gray
title('Absolute error (Mumford-Shah integration)','Interpreter','Latex','Fontsize',14)
end