-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_map_dropout.py
57 lines (43 loc) · 1.99 KB
/
feature_map_dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy
from chainer import cuda
from chainer import function
from chainer.utils import type_check
class FeatureMapDropout(function.Function):
"""Feature Map Dropout regularization."""
def __init__(self, dropout_ratio):
self.dropout_ratio = dropout_ratio
def check_type_forward(self, in_types):
type_check.expect(in_types.size() == 1)
type_check.expect(in_types[0].ndim >= 2) # need spatial dim beside batch x features x ...
type_check.expect(in_types[0].dtype.kind == 'f')
def forward(self, x):
if not hasattr(self, 'mask'):
scale = x[0].dtype.type(1. / (1 - self.dropout_ratio))
xp = cuda.get_array_module(*x)
# interpret first two axes as feature channel
if xp == numpy:
flag = xp.random.rand(*x[0].shape[:2]) >= self.dropout_ratio
else:
flag = (xp.random.rand(*x[0].shape[:2], dtype=numpy.float32) >=
self.dropout_ratio)
self.mask = scale * flag
return x[0] * self.mask.reshape(self.mask.shape + (1,) * (x[0].ndim - self.mask.ndim)),
def backward(self, x, gy):
return gy[0] * self.mask.reshape(self.mask.shape + (1,) * (gy[0].ndim - self.mask.ndim)),
def feature_map_dropout(x, ratio=.5, train=True):
"""Drops feature maps of input variable randomly.
This function drops whole spatial feature maps randomly with probability ``ratio`` and
scales the remaining elements by factor ``1 / (1 - ratio)``. In testing
mode, it does nothing and just returns ``x``.
Args:
x (~chainer.Variable): Input variable.
ratio (float): Dropout ratio.
train (bool): If ``True``, executes dropout. Otherwise, does nothing.
Returns:
~chainer.Variable: Output variable.
See the paper by J. Tompson: `Efficient object localization using convolutional networks \
<https://arxiv.org/abs/1411.4280>`_.
"""
if train:
return FeatureMapDropout(ratio)(x)
return x