-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
128 lines (111 loc) · 5.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from __future__ import print_function
import argparse
import numpy as np
import six
from tqdm import tqdm
import time
import chainer
from chainer import cuda
import chainer.links as L
from chainer import optimizers
from model import HumanPartsNet
from debugger import Debugger
from data import MiniBatchLoader
resultdir = "./result/"
X_dir = "./data/img/"
y_dir = "./data/mask/"
def train(model, optimizer, MiniBatchLoader, mean_loss, ac, IoU):
sum_accuracy, sum_loss, sum_IoU = 0, 0, 0
model.train = True
MiniBatchLoader.train = True
for X, y in tqdm(MiniBatchLoader):
x = chainer.Variable(xp.asarray(X, dtype=xp.float32), volatile='off')
t = chainer.Variable(xp.asarray(y.astype(np.int32), dtype=xp.int32), volatile='off')
# optimizer.weight_decay(0.0001)
optimizer.update(model, x, t)
sum_loss += float(model.loss.data) * len(t.data)
sum_accuracy += float(model.accuracy.data) * len(t.data)
sum_IoU += float(model.IoU) * len(t.data)
mean_loss.append(sum_loss / MiniBatchLoader.datasize_train)
ac.append(sum_accuracy / MiniBatchLoader.datasize_train)
IoU.append(sum_IoU / MiniBatchLoader.datasize_train)
print('train mean loss={}, accuracy={}, IoU={}'.format(mean_loss[-1], ac[-1], IoU[-1]))
return model, optimizer, mean_loss, ac, IoU
def test(model, MiniBatchLoader, mean_loss, ac, IoU):
sum_accuracy, sum_loss, sum_IoU = 0, 0, 0
model.train = False
MiniBatchLoader.train = False
for X, y in tqdm(MiniBatchLoader):
x = chainer.Variable(xp.asarray(X, dtype=xp.float32), volatile='on')
t = chainer.Variable(xp.asarray(y.astype(np.int32), dtype=xp.int32), volatile='on')
loss = model(x, t)
sum_loss += float(loss.data) * len(t.data)
sum_accuracy += float(model.accuracy.data) * len(t.data)
sum_IoU += float(model.IoU) * len(t.data)
mean_loss.append(sum_loss / MiniBatchLoader.datasize_test)
ac.append(sum_accuracy / MiniBatchLoader.datasize_test)
IoU.append(sum_IoU / MiniBatchLoader.datasize_test)
print('train mean loss={}, accuracy={}, IoU={}'.format(mean_loss[-1], ac[-1], IoU[-1]))
return model, mean_loss, ac, IoU
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Human parts network')
parser.add_argument('--batchsize', '-b', default=3, type=int,
help='Batch size of training')
parser.add_argument('--epoch', '-e', default=100, type=int,
help='Number of epoch of training')
parser.add_argument('--gpu', '-g', default=-1, type=int,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--logflag', '-l', choices=('on', 'off'),
default='on', help='Writing and plotting result flag')
parser.add_argument('--optimizer', '-o', choices=('adam', 'adagrad', 'sgd'),
default='sgd', help='Optimizer algorithm')
parser.add_argument('--lr', '-r', default=1e-7, type=float,
help='Learning rate of used optimizer')
parser.add_argument('--pretrainedmodel', '-p', default=None,
help='Path to pretrained model')
parser.add_argument('--saveflag', '-s', choices=('on', 'off'),
default='off', help='Save model and optimizer flag')
args = parser.parse_args()
# model setteing
model = HumanPartsNet(n_class=15)
if args.pretrainedmodel is not None:
from chainer import serializers
serializers.load_hdf5(args.pretrainedmodel, model)
# GPU settings
if args.gpu >= 0:
cuda.check_cuda_available()
xp = cuda.cupy
cuda.get_device(args.gpu).use()
model.to_gpu()
else:
xp = np
# Setup optimizer
# optimizer = optimizers.MomentumSGD(lr=args.lr, momentum=0.99)
optimizer = optimizers.Adam(alpha=args.lr)
optimizer.setup(model)
# prepare data feeder
MiniBatchLoader = MiniBatchLoader(X_dir, y_dir, batchsize=args.batchsize, insize=model.insize, train=True)
MiniBatchLoader.scan_for_human()
debugger = Debugger()
# error checking enabled
# chainer.set_debug(True)
# Learning loop
train_IoU, test_IoU, train_ac, test_ac, train_mean_loss, test_mean_loss = [], [], [], [], [], []
stime = time.clock()
for epoch in six.moves.range(1, args.epoch + 1):
print('Epoch', epoch, ': training...')
model, optimizer, train_mean_loss, train_ac, train_IoU = train(model, optimizer, MiniBatchLoader, train_mean_loss, train_ac, train_IoU)
print('Epoch', epoch, ': testing...')
model, test_mean_loss, test_ac, test_IoU = test(model, MiniBatchLoader, test_mean_loss, test_ac, test_IoU)
if args.logflag == 'on':
etime = time.clock()
debugger.writelog(MiniBatchLoader.datasize_train, MiniBatchLoader.datasize_test, MiniBatchLoader.batchsize,
'Human part segmentation', stime, etime,
train_mean_loss, train_ac, train_IoU,
test_mean_loss, test_ac, test_IoU,
epoch, LOG_FILENAME=resultdir + 'log.txt')
debugger.plot_result(train_mean_loss, test_mean_loss, savename=resultdir + 'log.png')
if args.saveflag == 'on' and epoch % 10 == 0:
from chainer import serializers
serializers.save_hdf5(resultdir + 'humanpartsnet_epoch' + str(epoch) + '.model', model)
serializers.save_hdf5(resultdir + 'humanpartsnet_epoch' + str(epoch) + '.state', optimizer)