-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
executable file
·111 lines (92 loc) · 4.08 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from tqdm.notebook import tqdm
from scipy.ndimage.interpolation import rotate
from PIL import Image
import cv2 as cv
import json
from detectron2.data import DatasetCatalog, MetadataCatalog
def calc_iou(x, y):
return np.bitwise_and(x, y).sum() / np.bitwise_or(x, y).sum()
def update_dict(old_dict, new_dict):
for key in new_dict.keys():
try:
old_dict[key].extend(new_dict[key])
except:
old_dict[key] = new_dict[key]
return old_dict
def match_transforms(indxsA, indxsB, boxA, boxB, outputA, outputB):
indxs_match = {}
skip = []
for idxa in indxsA[::-1]:
for idxb in indxsB[::-1]:
if idxb in skip: continue
iou = calc_iou(boxA[idxa], boxB[idxb])
if iou > 0.7:
indxs_match[idxa] = [[max(outputA.scores[idxa].item(), outputB.scores[idxb].item()), max(outputA.pred_masks[idxa].sum().item(), outputB.pred_masks[idxb].sum().item())]]
skip.append(idxb)
break
return indxs_match
def do_match(model, file_name):
temp_dicts = {'classes': [], 'scores': [], 'boxes': []}
img_orig = cv.imread(file_name)
H, W, _ = img_orig.shape
if W*H < 5000:
temp_dicts['classes'].append([])
temp_dicts['scores'].append([])
temp_dicts['boxes'].append([])
return temp_dicts
img_vflp = np.flip(img_orig, 0)
img_hflp = np.flip(img_orig, 1)
img_rot = rotate(img_orig, 90)
output_orig = model(img_orig)['instances']
output_vflp = model(img_vflp)['instances']
output_hflp = model(img_hflp)['instances']
output_rot = model(img_rot)['instances']
bboxes_orig = [box.detach().cpu().numpy().astype(int) for box in output_orig.pred_boxes]
drawn_orig = [cv.rectangle(np.zeros((H,W)), box[:2], box[2:], 1, -1).astype(bool) for box in bboxes_orig]
bboxes_vflp = [box.detach().cpu().numpy().astype(int) for box in output_vflp.pred_boxes]
drawn_vflp = [np.flip(cv.rectangle(np.zeros((H,W)), box[:2], box[2:], 1, -1), 0).astype(bool) for box in bboxes_vflp]
bboxes_hflp = [box.detach().cpu().numpy().astype(int) for box in output_hflp.pred_boxes]
drawn_hflp = [np.flip(cv.rectangle(np.zeros((H,W)), box[:2], box[2:], 1, -1), 1).astype(bool) for box in bboxes_hflp]
bboxes_rot = [box.detach().cpu().numpy().astype(int) for box in output_rot.pred_boxes]
drawn_rot = [rotate(cv.rectangle(np.zeros((W,H)), box[:2], box[2:], 1, -1).astype(bool), -90) for box in bboxes_rot]
indxs_orig = list(range(len(bboxes_orig)))
indxs_vflp = list(range(len(bboxes_vflp)))
indxs_hflp = list(range(len(bboxes_hflp)))
indxs_rot = list(range(len(bboxes_rot)))
# ov
indxs_matched = match_transforms(indxs_orig.copy(), indxs_vflp.copy(), drawn_orig, drawn_vflp, output_orig, output_vflp)
# oh
update_dict(indxs_matched, match_transforms(indxs_orig.copy(), indxs_hflp.copy(), drawn_orig, drawn_hflp, output_orig, output_hflp))
# or
update_dict(indxs_matched, match_transforms(indxs_orig.copy(), indxs_rot.copy(), drawn_orig, drawn_rot, output_orig, output_rot))
for key, value in indxs_matched.items():
if len(value) >= 2:
temp_dicts['classes'].append(output_orig.pred_classes[key].item())
temp_dicts['scores'].append(output_orig.scores[key].item())
temp_dicts['boxes'].append(bboxes_orig[key])
return temp_dicts
def run_tta(model, eval_image):
results_dicts = do_match(model, eval_image)
return results_dicts
def get_xray_dicts(mode, cfg):
if mode == "det":
with open(cfg.DATASETS.DET_TRAIN_JSON, "r") as sn:
obj_sep_train = json.load(sn)
return obj_sep_train
elif mode == "segm":
with open(cfg.DATASETS.SEGM_TRAIN_JSON, "r") as sn:
obj_sep_train = json.load(sn)
return obj_sep_train
elif mode == "test":
with open(cfg.DATASETS.TEST_JSON, "r") as sn:
obj_sep_test = json.load(sn)
return obj_sep_test
else:
assert False, "[{}] is not part of accepted modes: train, test.".format(mode)
def register_dataset(cfg):
for d in ["det", "segm", "test"]:
DatasetCatalog.register("xray_" + d, lambda d=d: get_xray_dicts(d, cfg))
MetadataCatalog.get("xray_" + d).set(thing_classes=["Gun", "Knife", "Wrench", "Pliers", "Scissors"])