-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathecc.py
688 lines (588 loc) · 24.5 KB
/
ecc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
from random import randint
from unittest import TestCase
from helper import hash256, encode_base58, hash160, encode_base58_checksum, little_endian_to_int, int_to_little_endian
from io import BytesIO
import hashlib
import hmac
class FieldElement:
def __init__(self, num, prime):
if num >= prime or num < 0:
error = 'Num {} not in field range 0 to {}'.format(
num, prime - 1)
raise ValueError(error)
self.num = num
self.prime = prime
def __repr__(self):
return 'FieldElement_{}({})'.format(self.prime, self.num)
def __eq__(self, other):
if other is None:
return False
return self.num == other.num and self.prime == other.prime
def __ne__(self, other):
# this should be the inverse of the == operator
return not (self == other)
def __add__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot add two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num + other.num) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __sub__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot subtract two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num - other.num) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __mul__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot multiply two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
num = (self.num * other.num) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __pow__(self, exponent):
n = exponent % (self.prime - 1)
num = pow(self.num, n, self.prime)
return self.__class__(num, self.prime)
def __truediv__(self, other):
if self.prime != other.prime:
raise TypeError('Cannot divide two numbers in different Fields')
# self.num and other.num are the actual values
# self.prime is what we need to mod against
# use fermat's little theorem:
# self.num**(p-1) % p == 1
# this means:
# 1/n == pow(n, p-2, p)
num = (self.num * pow(other.num, self.prime - 2, self.prime)) % self.prime
# We return an element of the same class
return self.__class__(num, self.prime)
def __rmul__(self, coefficient):
num = (self.num * coefficient) % self.prime
return self.__class__(num=num, prime=self.prime)
class FieldElementTest(TestCase):
def test_ne(self):
a = FieldElement(2, 31)
b = FieldElement(2, 31)
c = FieldElement(15, 31)
self.assertEqual(a, b)
self.assertTrue(a != c)
self.assertFalse(a != b)
def test_add(self):
a = FieldElement(2, 31)
b = FieldElement(15, 31)
self.assertEqual(a + b, FieldElement(17, 31))
a = FieldElement(17, 31)
b = FieldElement(21, 31)
self.assertEqual(a + b, FieldElement(7, 31))
def test_sub(self):
a = FieldElement(29, 31)
b = FieldElement(4, 31)
self.assertEqual(a - b, FieldElement(25, 31))
a = FieldElement(15, 31)
b = FieldElement(30, 31)
self.assertEqual(a - b, FieldElement(16, 31))
def test_mul(self):
a = FieldElement(24, 31)
b = FieldElement(19, 31)
self.assertEqual(a * b, FieldElement(22, 31))
def test_rmul(self):
a = FieldElement(24, 31)
b = 2
self.assertEqual(b * a, a + a)
def test_pow(self):
a = FieldElement(17, 31)
self.assertEqual(a**3, FieldElement(15, 31))
a = FieldElement(5, 31)
b = FieldElement(18, 31)
self.assertEqual(a**5 * b, FieldElement(16, 31))
def test_div(self):
a = FieldElement(3, 31)
b = FieldElement(24, 31)
self.assertEqual(a / b, FieldElement(4, 31))
a = FieldElement(17, 31)
self.assertEqual(a**-3, FieldElement(29, 31))
a = FieldElement(4, 31)
b = FieldElement(11, 31)
self.assertEqual(a**-4 * b, FieldElement(13, 31))
class Point:
def __init__(self, x, y, a, b):
self.a = a
self.b = b
self.x = x
self.y = y
if self.x is None and self.y is None:
return
if self.y**2 != self.x**3 + a * x + b:
raise ValueError('({}, {}) is not on the curve'.format(x, y))
def __eq__(self, other):
return self.x == other.x and self.y == other.y \
and self.a == other.a and self.b == other.b
def __ne__(self, other):
# this should be the inverse of the == operator
return not (self == other)
def __repr__(self):
if self.x is None:
return 'Point(infinity)'
elif isinstance(self.x, FieldElement):
return 'Point({},{})_{}_{} FieldElement({})'.format(
self.x.num, self.y.num, self.a.num, self.b.num, self.x.prime)
else:
return 'Point({},{})_{}_{}'.format(self.x, self.y, self.a, self.b)
def __add__(self, other):
if self.a != other.a or self.b != other.b:
raise TypeError('Points {}, {} are not on the same curve'.format(self, other))
# Case 0.0: self is the point at infinity, return other
if self.x is None:
return other
# Case 0.1: other is the point at infinity, return self
if other.x is None:
return self
# Case 1: self.x == other.x, self.y != other.y
# Result is point at infinity
if self.x == other.x and self.y != other.y:
return self.__class__(None, None, self.a, self.b)
# Case 2: self.x ≠ other.x
# Formula (x3,y3)==(x1,y1)+(x2,y2)
# s=(y2-y1)/(x2-x1)
# x3=s**2-x1-x2
# y3=s*(x1-x3)-y1
if self.x != other.x:
s = (other.y - self.y) / (other.x - self.x)
x = s**2 - self.x - other.x
y = s * (self.x - x) - self.y
return self.__class__(x, y, self.a, self.b)
# Case 4: if we are tangent to the vertical line,
# we return the point at infinity
# note instead of figuring out what 0 is for each type
# we just use 0 * self.x
if self == other and self.y == 0 * self.x:
return self.__class__(None, None, self.a, self.b)
# Case 3: self == other
# Formula (x3,y3)=(x1,y1)+(x1,y1)
# s=(3*x1**2+a)/(2*y1)
# x3=s**2-2*x1
# y3=s*(x1-x3)-y1
if self == other:
s = (3 * self.x**2 + self.a) / (2 * self.y)
x = s**2 - 2 * self.x
y = s * (self.x - x) - self.y
return self.__class__(x, y, self.a, self.b)
def __rmul__(self, coefficient):
coef = coefficient
current = self
result = self.__class__(None, None, self.a, self.b)
while coef:
if coef & 1:
result += current
current += current
coef >>= 1
return result
class PointTest(TestCase):
def test_ne(self):
a = Point(x=3, y=-7, a=5, b=7)
b = Point(x=18, y=77, a=5, b=7)
self.assertTrue(a != b)
self.assertFalse(a != a)
def test_on_curve(self):
with self.assertRaises(ValueError):
Point(x=-2, y=4, a=5, b=7)
# these should not raise an error
Point(x=3, y=-7, a=5, b=7)
Point(x=18, y=77, a=5, b=7)
def test_add0(self):
a = Point(x=None, y=None, a=5, b=7)
b = Point(x=2, y=5, a=5, b=7)
c = Point(x=2, y=-5, a=5, b=7)
self.assertEqual(a + b, b)
self.assertEqual(b + a, b)
self.assertEqual(b + c, a)
def test_add1(self):
a = Point(x=3, y=7, a=5, b=7)
b = Point(x=-1, y=-1, a=5, b=7)
self.assertEqual(a + b, Point(x=2, y=-5, a=5, b=7))
def test_add2(self):
a = Point(x=-1, y=1, a=5, b=7)
self.assertEqual(a + a, Point(x=18, y=-77, a=5, b=7))
class ECCTest(TestCase):
def test_on_curve(self):
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
valid_points = ((192, 105), (17, 56), (1, 193))
invalid_points = ((200, 119), (42, 99))
for x_raw, y_raw in valid_points:
x = FieldElement(x_raw, prime)
y = FieldElement(y_raw, prime)
Point(x, y, a, b)
for x_raw, y_raw in invalid_points:
x = FieldElement(x_raw, prime)
y = FieldElement(y_raw, prime)
with self.assertRaises(ValueError):
Point(x, y, a, b)
def test_add(self):
# tests the following additions on curve y^2=x^3-7 over F_223:
# (192,105) + (17,56)
# (47,71) + (117,141)
# (143,98) + (76,66)
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
additions = (
# (x1, y1, x2, y2, x3, y3)
(192, 105, 17, 56, 170, 142),
(47, 71, 117, 141, 60, 139),
(143, 98, 76, 66, 47, 71),
)
# loop over additions
# initialize x's and y's as FieldElements
# create p1, p2 and p3 as Points
# check p1+p2==p3
for x1_raw, y1_raw, x2_raw, y2_raw, x3_raw, y3_raw in additions:
x1 = FieldElement(x1_raw, prime)
y1 = FieldElement(y1_raw, prime)
x2 = FieldElement(x2_raw, prime)
y2 = FieldElement(y2_raw, prime)
x3 = FieldElement(x3_raw, prime)
y3 = FieldElement(y3_raw, prime)
p1 = Point(x1, y1, a, b)
p2 = Point(x2, y2, a, b)
p3 = Point(x3, y3, a, b)
self.assertEqual(p1 + p2, p3)
def test_rmul(self):
# tests the following scalar multiplications
# 2*(192,105)
# 2*(143,98)
# 2*(47,71)
# 4*(47,71)
# 8*(47,71)
# 21*(47,71)
prime = 223
a = FieldElement(0, prime)
b = FieldElement(7, prime)
multiplications = (
# (coefficient, x1, y1, x2, y2)
(2, 192, 105, 49, 71),
(2, 143, 98, 64, 168),
(2, 47, 71, 36, 111),
(4, 47, 71, 194, 51),
(8, 47, 71, 116, 55),
(21, 47, 71, None, None),
)
# iterate over the multiplications
for s, x1_raw, y1_raw, x2_raw, y2_raw in multiplications:
x1 = FieldElement(x1_raw, prime)
y1 = FieldElement(y1_raw, prime)
p1 = Point(x1, y1, a, b)
# initialize the second point based on whether it's the point at infinity
if x2_raw is None:
p2 = Point(None, None, a, b)
else:
x2 = FieldElement(x2_raw, prime)
y2 = FieldElement(y2_raw, prime)
p2 = Point(x2, y2, a, b)
# check that the product is equal to the expected point
self.assertEqual(s * p1, p2)
A = 0
B = 7
P = 2**256 - 2**32 - 977
N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
class S256Field(FieldElement):
def __init__(self, num, prime=None):
super().__init__(num=num, prime=P)
def __repr__(self):
return '{:x}'.format(self.num).zfill(64)
def sqrt(self):
# returns square root of a finite field element.
# useful for calculating y when receiving a compressed sec point.
return self**((P+1)//4)
class S256Point(Point):
def __init__(self, x, y, a=None, b=None):
a, b = S256Field(A), S256Field(B)
# if received x and y are integers, it converts them to S256Field(x) and S256Field(y)
if type(x) == int:
super().__init__(x=S256Field(x), y=S256Field(y), a=a, b=b)
else:
super().__init__(x=x, y=y, a=a, b=b) # <1>
def __repr__(self):
if self.x is None:
return 'S256Point(infinity)'
else:
return 'S256Point({}, {})'.format(self.x, self.y)
def __rmul__(self, coefficient):
coef = coefficient % N
return super().__rmul__(coef)
def verify(self, z, sig):
# for given point or public key(self), verifies a signature
s_inv = pow(sig.s, N-2, N)
u = z * s_inv % N
v = sig.r * s_inv % N
R = u*G + v*self
return R.x.num == sig.r
def sec(self, compressed=True):
# returns sec format of given point in bytes - serializes the point so other
# nodes in network can understand it
if compressed:
if self.y.num % 2 == 0:
# if y is even, compressed sec begins with 02
return b'\x02' + self.x.num.to_bytes(32, 'big')
else:
# else it begins with 03
return b'\x03' + self.x.num.to_bytes(32, 'big')
return b'\x04' + self.x.num.to_bytes(32, 'big') + self.y.num.to_bytes(32, 'big')
@classmethod
def parse(self, sec_bin):
# returns a Point object from an sec in bytes format.
if sec_bin[0] == 4:
x = int.from_bytes(sec_bin[1:33], 'big')
y = int.from_bytes(sec_bin[33:65], 'big')
return S256Point(x, y)
# variable that holds the evenness of y
is_even = sec_bin[0] == 2
x = S256Field(int.from_bytes(sec_bin[1:], 'big'))
# calculate right side of curve equation y**2 = x**3 + 7
right_side = x**3 + S256Field(B)
# solve for left side
solution = right_side.sqrt()
# if y is even
if is_even:
# check if solution is y or p - y and set y accordingly (page 76)
if solution.num % 2 == 0:
y = solution
else:
y = S256Field(P - solution.num)
# if y is odd
else:
# check if solution is y or p - y and set y acordingly (page 76)
if solution.num % 2 == 0:
y = S256Field(P - solution.num)
else:
y = solution
return S256Point(x, y)
# returns the hash160 of the point's sec format
def hash160(self, compressed=True):
return hash160(self.sec(compressed))
# returns the p2pkh address for the given point - page 83
# We know it's p2pkh because of the prefixes.
def address(self, compressed=True, testnet=False):
# prefix depends on address being testnet or mainnet and type of address.
if testnet:
prefix = b'\x6f'
else:
prefix = b'\x00'
# hash 160 of the sec format
h160 = self.hash160(compressed)
# combine prefix with hash 160 of sec
combined = prefix + h160
return encode_base58_checksum(combined)
G = S256Point(
0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
class S256Test(TestCase):
def test_order(self):
point = N * G
self.assertIsNone(point.x)
def test_pubpoint(self):
# write a test that tests the public point for the following
points = (
# secret, x, y
(7, 0x5cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc, 0x6aebca40ba255960a3178d6d861a54dba813d0b813fde7b5a5082628087264da),
(1485, 0xc982196a7466fbbbb0e27a940b6af926c1a74d5ad07128c82824a11b5398afda, 0x7a91f9eae64438afb9ce6448a1c133db2d8fb9254e4546b6f001637d50901f55),
(2**128, 0x8f68b9d2f63b5f339239c1ad981f162ee88c5678723ea3351b7b444c9ec4c0da, 0x662a9f2dba063986de1d90c2b6be215dbbea2cfe95510bfdf23cbf79501fff82),
(2**240 + 2**31, 0x9577ff57c8234558f293df502ca4f09cbc65a6572c842b39b366f21717945116, 0x10b49c67fa9365ad7b90dab070be339a1daf9052373ec30ffae4f72d5e66d053),
)
# iterate over points
for secret, x, y in points:
# initialize the secp256k1 point (S256Point)
point = S256Point(x, y)
# check that the secret*G is the same as the point
self.assertEqual(secret * G, point)
def test_verify(self):
point = S256Point(
0x887387e452b8eacc4acfde10d9aaf7f6d9a0f975aabb10d006e4da568744d06c,
0x61de6d95231cd89026e286df3b6ae4a894a3378e393e93a0f45b666329a0ae34)
z = 0xec208baa0fc1c19f708a9ca96fdeff3ac3f230bb4a7ba4aede4942ad003c0f60
r = 0xac8d1c87e51d0d441be8b3dd5b05c8795b48875dffe00b7ffcfac23010d3a395
s = 0x68342ceff8935ededd102dd876ffd6ba72d6a427a3edb13d26eb0781cb423c4
self.assertTrue(point.verify(z, Signature(r, s)))
z = 0x7c076ff316692a3d7eb3c3bb0f8b1488cf72e1afcd929e29307032997a838a3d
r = 0xeff69ef2b1bd93a66ed5219add4fb51e11a840f404876325a1e8ffe0529a2c
s = 0xc7207fee197d27c618aea621406f6bf5ef6fca38681d82b2f06fddbdce6feab6
self.assertTrue(point.verify(z, Signature(r, s)))
def test_sec(self):
coefficient = 999**3
uncompressed = '049d5ca49670cbe4c3bfa84c96a8c87df086c6ea6a24ba6b809c9de234496808d56fa15cc7f3d38cda98dee2419f415b7513dde1301f8643cd9245aea7f3f911f9'
compressed = '039d5ca49670cbe4c3bfa84c96a8c87df086c6ea6a24ba6b809c9de234496808d5'
point = coefficient * G
self.assertEqual(point.sec(compressed=False), bytes.fromhex(uncompressed))
self.assertEqual(point.sec(compressed=True), bytes.fromhex(compressed))
coefficient = 123
uncompressed = '04a598a8030da6d86c6bc7f2f5144ea549d28211ea58faa70ebf4c1e665c1fe9b5204b5d6f84822c307e4b4a7140737aec23fc63b65b35f86a10026dbd2d864e6b'
compressed = '03a598a8030da6d86c6bc7f2f5144ea549d28211ea58faa70ebf4c1e665c1fe9b5'
point = coefficient * G
self.assertEqual(point.sec(compressed=False), bytes.fromhex(uncompressed))
self.assertEqual(point.sec(compressed=True), bytes.fromhex(compressed))
coefficient = 42424242
uncompressed = '04aee2e7d843f7430097859e2bc603abcc3274ff8169c1a469fee0f20614066f8e21ec53f40efac47ac1c5211b2123527e0e9b57ede790c4da1e72c91fb7da54a3'
compressed = '03aee2e7d843f7430097859e2bc603abcc3274ff8169c1a469fee0f20614066f8e'
point = coefficient * G
self.assertEqual(point.sec(compressed=False), bytes.fromhex(uncompressed))
self.assertEqual(point.sec(compressed=True), bytes.fromhex(compressed))
def test_address(self):
secret = 888**3
mainnet_address = '148dY81A9BmdpMhvYEVznrM45kWN32vSCN'
testnet_address = 'mieaqB68xDCtbUBYFoUNcmZNwk74xcBfTP'
point = secret * G
self.assertEqual(
point.address(compressed=True, testnet=False), mainnet_address)
self.assertEqual(
point.address(compressed=True, testnet=True), testnet_address)
secret = 321
mainnet_address = '1S6g2xBJSED7Qr9CYZib5f4PYVhHZiVfj'
testnet_address = 'mfx3y63A7TfTtXKkv7Y6QzsPFY6QCBCXiP'
point = secret * G
self.assertEqual(
point.address(compressed=False, testnet=False), mainnet_address)
self.assertEqual(
point.address(compressed=False, testnet=True), testnet_address)
secret = 4242424242
mainnet_address = '1226JSptcStqn4Yq9aAmNXdwdc2ixuH9nb'
testnet_address = 'mgY3bVusRUL6ZB2Ss999CSrGVbdRwVpM8s'
point = secret * G
self.assertEqual(
point.address(compressed=False, testnet=False), mainnet_address)
self.assertEqual(
point.address(compressed=False, testnet=True), testnet_address)
class Signature:
def __init__(self, r, s):
self.r = r
self.s = s
def __repr__(self):
return f"Signature ({self.r}, {self.s})"
# returns the signature in der format (page 79)
def der(self):
# convert r to binary, big endian
r_bin = self.r.to_bytes(32, 'big')
# strip zeros in front
r_bin = r_bin.lstrip(b'\x00')
# check if first byte >= 0x80, if it is prepend 0x00
if r_bin[0] >= 0x80:
r_bin = b'\x00' + r_bin
result = bytes([2, len(r_bin)]) + r_bin
# do the same with s
s_bin = self.s.to_bytes(32, 'big')
s_bin = s_bin.lstrip(b'\x00')
if s_bin[0] >= 0x80:
s_bin = b'\x00' + s_bin
result += bytes([2, len(s_bin)]) + s_bin
# returns the DER signature in bytes.
return bytes([0x30, len(result)]) + result
@classmethod
def parse(cls, signature_bin):
s = BytesIO(signature_bin)
compound = s.read(1)[0]
if compound != 0x30:
raise SyntaxError("Bad Signature")
length = s.read(1)[0]
if length + 2 != len(signature_bin):
raise SyntaxError("Bad Signature Length")
marker = s.read(1)[0]
if marker != 0x02:
raise SyntaxError("Bad Signature")
rlength = s.read(1)[0]
r = int.from_bytes(s.read(rlength), 'big')
marker = s.read(1)[0]
if marker != 0x02:
raise SyntaxError("Bad Signature")
slength = s.read(1)[0]
s = int.from_bytes(s.read(slength), 'big')
if len(signature_bin) != 6 + rlength + slength:
raise SyntaxError("Signature too long")
return cls(r, s)
class SignatureTest(TestCase):
def test_der(self):
testcases = (
(1, 2),
(randint(0, 2**256), randint(0, 2**255)),
(randint(0, 2**256), randint(0, 2**255)),
)
for r, s in testcases:
sig = Signature(r, s)
der = sig.der()
sig2 = Signature.parse(der)
self.assertEqual(sig2.r, r)
self.assertEqual(sig2.s, s)
class PrivateKey:
def __init__(self, secret):
# secret is an integer that represents the hash256 of the passphrase.
self.secret = secret
# public key
self.point = secret * G
def hex(self):
return self.secret.zfill(64)
# Returns a Signature object for the given z.
def sign(self, z):
k = self.deterministic_k(z)
R = k * G
r = R.x.num
k_inv = pow(k, N-2, N)
s = (z + r*self.secret) * k_inv % N
# Done for malleability reasons
if s > N/2:
s = N - s
return Signature(r, s)
def deterministic_k(self, z):
# Returns a deterministic k, such that the probability of repeating a k is much lower.
k = b'\x00' * 32
v = b'\x01' * 32
if z > N:
z -= N
z_bytes = z.to_bytes(32, 'big')
secret_bytes = self.secret.to_bytes(32, 'big')
s256 = hashlib.sha256
k = hmac.new(k, v + b'\x00' + secret_bytes + z_bytes, s256).digest()
v = hmac.new(k, v, s256).digest()
k = hmac.new(k, v + b'\x01' + secret_bytes + z_bytes, s256).digest()
v = hmac.new(k, v, s256).digest()
while True:
v = hmac.new(k, v, s256).digest()
candidate = int.from_bytes(v, 'big')
if candidate >= 1 and candidate < N:
return candidate
k = hmac.new(k, v + b'\x00', s256).digest()
v = hmac.new(k, v, s256).digest()
# returns private key in WIF format - page 84
def wif(self, compressed=True, testnet=False):
secret_bytes = self.secret.to_bytes(32, 'big')
if testnet:
prefix = b'\xef'
else:
prefix = b'\x80'
if compressed:
suffix = b'\x01'
else:
suffix = b''
return encode_base58_checksum(prefix + secret_bytes + suffix)
class PrivateKeyTest(TestCase):
def test_sign(self):
pk = PrivateKey(randint(0, N))
z = randint(0, 2**256)
sig = pk.sign(z)
self.assertTrue(pk.point.verify(z, sig))
def test_wif(self):
pk = PrivateKey(2**256 - 2**199)
expected = 'L5oLkpV3aqBJ4BgssVAsax1iRa77G5CVYnv9adQ6Z87te7TyUdSC'
self.assertEqual(pk.wif(compressed=True, testnet=False), expected)
pk = PrivateKey(2**256 - 2**201)
expected = '93XfLeifX7Jx7n7ELGMAf1SUR6f9kgQs8Xke8WStMwUtrDucMzn'
self.assertEqual(pk.wif(compressed=False, testnet=True), expected)
pk = PrivateKey(0x0dba685b4511dbd3d368e5c4358a1277de9486447af7b3604a69b8d9d8b7889d)
expected = '5HvLFPDVgFZRK9cd4C5jcWki5Skz6fmKqi1GQJf5ZoMofid2Dty'
self.assertEqual(pk.wif(compressed=False, testnet=False), expected)
pk = PrivateKey(0x1cca23de92fd1862fb5b76e5f4f50eb082165e5191e116c18ed1a6b24be6a53f)
expected = 'cNYfWuhDpbNM1JWc3c6JTrtrFVxU4AGhUKgw5f93NP2QaBqmxKkg'
self.assertEqual(pk.wif(compressed=True, testnet=True), expected)