-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbenchmark.py
153 lines (119 loc) · 4.94 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import json
import random
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict
from torch.cuda import OutOfMemoryError
from tqdm import tqdm
from args import get_exp_name, get_path
from instances.generate_taillard import generate_taillard, taillard_to_str
from train import main
def sample_hyperparams(hyperparams: Dict[str, list]) -> Dict[str, Any]:
sampled = dict()
for key, values in hyperparams.items():
sampled[key] = random.choice(values)
return sampled
def log_hyperparams(hyperparams: Dict[str, Any], logfile: Path):
# Save the hyperparams in a json file.
with open(logfile, "w") as f:
json.dump(hyperparams, f, indent=4)
def benchmark_seed(args, n_tries: int):
base_args = deepcopy(args)
for seed in tqdm(range(n_tries), desc="BENCHMARKING SEED"):
args = deepcopy(base_args)
# Set specific args.
setattr(args, "seed", seed)
setattr(args, "exp_name_appendix", f"seed-{seed}")
exp_name = get_exp_name(args)
path = get_path(args.path, exp_name)
main(args, exp_name, path)
def benchmark_single_experiment_generalisation(args, n_tries: int):
base_args = deepcopy(args)
for seed in tqdm(range(n_tries), desc="BENCHMARKING SINGLE EXP GENERALISATION"):
args = deepcopy(base_args)
# Generate a training instance.
n_m, n_j = args.n_m, args.n_j
taillard = generate_taillard(n_j, n_m, seed=seed)
taillard = taillard_to_str(taillard)
filename = f"{n_j}x{n_m}-{seed}.txt"
instance_path = f"instances/generated/{filename}"
with open(instance_path, "w") as f:
f.write(taillard)
# Set specific args.
setattr(args, "seed", seed)
setattr(args, "exp_name_appendix", f"single-exp-generalisation-{seed}")
setattr(args, "load_problem", instance_path)
setattr(args, "first_machine_id_is_one", True)
setattr(args, "fixed_validation", True)
setattr(args, "n_validation_env", 5)
exp_name = get_exp_name(args)
path = get_path(args.path, exp_name)
main(args, exp_name, path)
def benchmark_small_exp_to_big_exp_generalisation(args, n_tries: int):
base_args = deepcopy(args)
for seed in tqdm(
range(n_tries), desc="BENCHMARKING SMALL EXP TO BIG GENERALISATION"
):
args = deepcopy(base_args)
# Generate a training instance.
n_m, n_j = args.n_m, args.n_j
taillard = generate_taillard(n_j, n_m, seed=seed)
taillard = taillard_to_str(taillard)
filename = f"{n_j}x{n_m}-{seed}.txt"
instance_path = f"instances/generated/{filename}"
with open(instance_path, "w") as f:
f.write(taillard)
# Set specific args.
setattr(args, "seed", seed)
setattr(args, "exp_name_appendix", f"single-exp-generalisation-{seed}")
setattr(args, "load_problem", instance_path)
setattr(args, "first_machine_id_is_one", True)
setattr(args, "fixed_validation", True)
setattr(args, "n_validation_env", 5)
exp_name = get_exp_name(args)
path = get_path(args.path, exp_name)
main(args, exp_name, path)
def benchmark_dgl_hyperparams(args, n_tries: int):
params_space = {
"graph_pooling": ["max", "learn"],
"layer_pooling": ["last", "all"],
"mlp_act_graph": ["relu", "tanh", "gelu", "selu"],
"n_mlp_layers_features_extractor": [1, 2, 3, 4, 5],
"n_layers_features_extractor": [1, 3, 4, 5, 6, 10],
"hidden_dim_features_extractor": [16, 32, 64],
"residual_gnn": [True, False],
"normalize_gnn": [False],
"fe_type": ["dgl"],
"n_mlp_layers_actor": [1],
"n_mlp_layers_critic": [1],
"hidden_dim_actor": [32],
"hidden_dim_critic": [32],
"graph_has_relu": [True],
}
for seed in tqdm(range(n_tries), desc="BENCHMARKING DGL HYPERPARAMS"):
args = deepcopy(args)
# We do not change the seed, so that the validation set is the same across
# all experiments.
# setattr(args, "seed", seed)
# Sample hyperparams.
sampled = sample_hyperparams(params_space)
for key, value in sampled.items():
setattr(args, key, value)
# Set specific args.
setattr(args, "exp_name_appendix", f"dgl-hyperparams_{seed}")
exp_name = get_exp_name(args)
path = get_path(args.path, exp_name)
# Disable visdom to avoid spamming the server.
setattr(args, "disable_visdom", True)
try:
main(args, exp_name, path)
except OutOfMemoryError:
print("Out of memory, skipping.")
sampled["out_of_memory"] = True
finally:
log_hyperparams(sampled, Path(path) / "hyperparams.json")
if __name__ == "__main__":
from args import args
# benchmark_seed(args, 10)
# benchmark_single_experiment_generalisation(args, 10)
benchmark_dgl_hyperparams(args, 1000)