-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysisCode.R
656 lines (458 loc) · 15.5 KB
/
analysisCode.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#specifying input in Hebrew
Sys.setlocale("LC_ALL", "Hebrew")
#installing the XML package
install.packages("xml")
#installing the readtext package
install.packages("readtext")
#loading the XML package
library(XML)
#loading the readtext package
library(readtext)
#loading the methods library
library(methods)
#parsing the first file
tmpFile <- xmlParse("C:/Users/jonat/Documents/GISModule/finalAssessment/stores/Stores0000072906390-202001012330.xml",
encoding = "UTF-16LE")
install.packages("httr")
library(httr)
library(dplyr)
install.packages("jsonlite")
library(jsonlite)
r <- GET("https://api.superget.co.il")
r
status_code(r)
headers(r)
str(content(r))
http_status(r)
r$status_code
headers(r)
cookies(r)
content(r, "text")
content(r, "raw")
content(r, "parsed")
url <-"https://api.superget.co.il"
key <- "c194ad0c878dc086e935d2ecb4a1e27c00587645"
action <- "TestFunction"
r <- GET(url, query = list(api_key = key, action = action))
content(TLVStores, "text", encoding = "UTF-8")
TLVCityCode <- "1180"
getStoresAction <- "GetStoresByCityID"
TLVStores <- GET(url, query=list(api_key = key, action = getStoresAction, city_id = TLVCityCode))
headers(TLVStores)
parsed_stores <- content(TLVStores, "parsed", encoding = "UTF-8")
parsed_stores
?names
names(TLVStores)
TLVStores$headers$`content-type`
str(parsed_stores$doc)
content(TLVStores, "text")
Sys.setlocale("LC_ALL", "Hebrew")
TLVStores$headers$`content-type`
singleStore$headers$`content-type`
content(TLVStores,"text", encoding = "UTF-8")
todel <- content(TLVStores, "text")
Encoding(todel) <- "UTF-8"
todel
rm(todel)
parsed_stores
?htmlParse
install.packages("xml2")
library(xml2)
tat <- content(TLVStores,"text", encoding = "UTF-8")
tat
tata <- fromJSON(tat)
?fromJSON
typeof(tata)
tata$chain_id
storesDF <- data.frame(tata)
typeof(stores)
typeof(storesDF)
tata[,11:12]
filter(tata,chain_code == "7290172900007")
tata$chain_code
newdf <-data_frame(tata$store_id,
tata$chain_id)
typeof(newdf)
filteredStores <- dplyr::filter(tata, chain_code != "7290172900007" #Excluding the "SuperPharm" chain
& sub_chain_code != "5" #Excluding the "Be Pharm" sub chain (belongs to Shufersal)
& store_code != "539") #Exluding the "AM:PM online" store
#Adding manualy xy coordinates for a single store that has no xy data
filteredStores[114,11] = "32.0624141"
filteredStores[114,12] = "34.7732659"
#Fixing wrong coordinates for store 1196 (line 111)
filteredStores[111,11] = "32.0824511"
filteredStores[111,12] = "34.7784227"
#Fixing wrong coordinates for store 1075 (line 93)
filteredStores[93,11] = "32.057635"
filteredStores[93,12] = "34.811125"
#Fixing wrong coordinates for store 160 (line 12)
filteredStores[12,11] = "32.0509574"
filteredStores[12,12] = "34.7516468"
#Fixing wrong coordinates for store 1222 (line 113)
filteredStores[113,11] = "32.0954439"
filteredStores[113,12] = "34.7756062"
library(tmap)
library(tmaptools)
tmap_mode("plot")
summary(filteredStores)
#transfer xy coordinates to numeric
filteredStores$store_gps_lat <- as.numeric(filteredStores$store_gps_lat)
filteredStores$store_gps_lng <- as.numeric(filteredStores$store_gps_lng)
library(sp)
library(sf)
library(rgdal)
library(maptools)
library(rgeos)
filteredStoressp <- SpatialPointsDataFrame(filteredStores[,c(12,11)],filteredStores[,-c(12,11)],
proj4string = CRS("+proj=longlat +datum=WGS84"))
str(filteredStoressp)
tmap_mode("view")
tm_shape(filteredStoressp)
cityLimits <- st_read("cityArea/City Limits.shp")
TLVQuarters <- st_read("TLVQuarters/Quarters.shp")
#selecting the city centre - quarters 3, 4, 6 and 5
TLVCityCentre <- TLVQuarters[TLVQuarters$krova %in% c('3','4','6','5'),]
class(TLVCityCentre)
TLVCityCentreUnion <- st_combine(TLVCityCentre)
class(TLVCityCentreUnion)
class(TLVCityCentreUnion)
TLVCityCentreUnionSp <- as(TLVCityCentreUnion,'Spatial')
class(TLVCityCentreUnionSp)
TLVCityCentreUnionSp
qtm(TLVCityCentreUnionSp)
summary(TLVQuarters)
typeof(TLVQuarters)
qtm(cityLimits)
library(raster)
library(dismo)
library(PBSmapping)
vor <- voronoi(filteredStoressp)
tm_shape(vor) +
tm_polygons(col = NA, alpha = 0.5) +
tm_shape(TLVCityCentreUnion) +
tm_polygons(col = "red", alpha = 0.5) +
tm_shape(filteredStoressp) +
tm_dots(col = "blue")
TLVCityCentreSp <- SpatialPolygons2PolySet(TLVCityCentre)
print(TLVCityCentre)
qtm(TLVCityCentreUnion)
class(TLVCityCentreSp)
print(vor)
#https://r-spatial.github.io/sf/reference/geos_combine.html
tm_shape(vor) +
tm_polygons("chain_name",alpha = 0.5) +
tm_shape(TLVCityCentreUnionSp) +
tm_polygons(col = "red", alpha = 0.5) +
tm_shape(filteredStoressp) +
tm_dots(col = "blue")
tm_shape(vor) +
tm_polygons("chain_name",alpha = 0.5) +
tm_shape(filteredStoressp) +
tm_dots(col = "blue")
qtm(filteredStoressp)
vor$chain_name
?CRS
#project to wgs84
TLVCityCentreUnionSpWGS84 <- spTransform(TLVCityCentreUnionSp,CRS("+proj=longlat +datum=WGS84"))
#exctracting city centre stores
filteredStoresCityCentre <- filteredStoressp[TLVCityCentreUnionSpWGS84,]
#building a prices list
storeIDs <- filteredStoresCityCentre$store_id
#defining product barcode
productBarcode <- "7290000112220"
prices <- numeric(length(storeIDs))
pricesFail <- prices[]
pricesFail
getPriceFunc = "GetPriceByProductBarCode"
for (i in 1:(length(storeIDs))) {
singleStore <- GET(url, query=list(api_key = key, action = getPriceFunc, product_barcode = productBarcode, store_id = storeIDs[i]))
singlePrice <- content(singleStore,"text", encoding = "UTF-8")
SinglePriceValue <- fromJSON(singlePrice)
if(is.null(SinglePriceValue$store_product_price))
{
prices[i] = "NA"
}
else {
prices[i] = SinglePriceValue$store_product_price
}
}
SinglePriceValue$error_id
storeIDs
for(i in 1:(length(storeIDs)))
{
print(paste(i,storeIDs[i]))
}
prices[13] = "17.2"
prices[14] = "NA"
prices[15] = "16.9"
prices[16] = "16.9"
prices[17] = "16.9"
prices[18] = "16.9"
prices[19] = "16.9"
prices[20] = "16.9"
prices[21] = "16.9"
prices[22] = "16.9"
prices[23] = "16.9"
prices[24] = "16.9"
prices[25] = "16.9"
prices[26] = "16.9"
prices[27] = "16.9"
prices[28] = "16.9"
prices[29] = "16.9"
prices[30] = "16.9"
prices[31] = "16.9"
prices[32] = "16.9"
prices[33] = "16.9"
prices[34] = "16.9"
prices[35] = "16.9"
prices[36] = "16.9"
prices[37] = "18.9"
prices[38] = "16.9"
prices[39] = "16.9"
prices[40] = "16.9"
prices[41] = "16.9"
prices[42] = "16.9"
prices[43] = "16.9"
prices[44] = "16.9"
prices[45] = "16.9"
prices[46] = "16.9"
prices[47] = "16.9"
prices[48] = "16.9"
prices[49] = "14.2"
prices[50] = "14.2"
prices[51] = "14.2"
prices[52] = "10.9"
prices[53] = "16.9"
prices[54] = "11.9"
prices[55] = "10"
prices[56] = "10"
prices[57] = "10"
prices[58] = "16.9"
prices[59] = "10"
prices[60] = "10"
prices[61] = "17.7"
prices[62] = "10"
prices[63] = "10"
prices[64] = "10"
prices[65] = "10"
prices[66] = "14.9"
prices[67] = "14.2"
prices[68] = "15.9"
prices[69] = "16.9"
prices
prices
storesID
pricesFloat <- as.double(prices)
pricesFloat
pricesDF <- data.frame(storeIDs,pricesFloat)
pricesDF$prices
hist(pricesDF$prices)
hist(pricesDF$prices,
main="Histogram for Tahini Prices in Central Tel Aviv",
xlab="Price (in NIS)",
border="black",
col="gray",
xlim=c(10,20),
ylim=c(0,40),
las=1,
breaks = 9)
max(pricesDF$prices, na.rm = TRUE)
summary(tata)
filteredStoresCityCentre$chain_name
chainNameHeb <- unique(filteredStoressp$chain_name,incomparables = FALSE)
chainNameEng <- c("Shufersal", "Osher Ad", "Dor Alon", "Tiv Taam", "Lahav", "Victory", "Fresh Market",
"Rami Levy", "Yohananof", "Bitan", "Mega", "Eden Teva")
chainNameDic <- data.frame(chainNameHeb,chainNameEng)
chainNameDic
chainNameDic$chainNameHeb
filteredStoresCityCentre$
class(filteredStoresCityCentre)
filteredStoresCityCentre@data <- data.frame(filteredStoresCityCentre@data,chainNameDic[match(
filteredStoresCityCentre@data[,"chain_name"],chainNameDic[,"chainNameHeb"]),])
filteredStoresCityCentre$chainNameEng
storeIDs
prices
qtm(filteredStoressp)
class(filteredStoresCityCentre)
summary(filteredStoresCityCentre)
tmap_mode("view")
qtm(filteredStoresCityCentre)
filteredStoressp
TLVCityCentreUnionSp
class(TLVCityCentre)
class(filteredStoressp)
qtm(BoroughMapSP)
class(vor)
qtm(filteredVorCityCentre)
qtm(TLVCityCentreUnionSpWGS84)
class(TLVCityCentreUnionSpWGS84)
TLVCityCentrebbox <- st_bbox(TLVCityCentreUnionSpWGS84)
TLVCityCentrebboxString <- paste(TLVCityCentrebbox["x","min"],TLVCityCentrebbox["y","min"],
TLVCityCentrebbox["x","max"],TLVCityCentrebbox["y","max"],
sep = ",")
paste("A", 1:6, sep = "")
TLVCityCentrebbox
TLVCityCentrebboxString
osmURL <- "https://api.openstreetmap.org/api/0.6/map"
osmRawData <- GET(osmURL, query=list(bbox = TLVCityCentrebboxString))
osmRawContent <- content(osmRawData,"text", encoding = "UTF-8")
tata <- fromJSON(tat)
osmRawContent
#locating the xyz tile for Tel Aviv
#https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
deg2num<-function(lat_deg, lon_deg, zoom){
lat_rad <- lat_deg * pi /180
n <- 2.0 ^ zoom
xtile <- floor((lon_deg + 180.0) / 360.0 * n)
ytile = floor((1.0 - log(tan(lat_rad) + (1 / cos(lat_rad))) / pi) / 2.0 * n)
return( c(xtile, ytile))
}
deg2num.all<-function(lat_deg, lon_deg){
nums <- as.data.frame(matrix(ncol=6,nrow=21))
colnames(nums) <- c('zoom', 'x', 'y', 'mapquest_osm', 'mapquest_aerial', 'osm')
rownames(nums) <- 0:20
for (zoom in 0:20) {
num <- deg2num(lat_deg, lon_deg, zoom)
nums[1+zoom,'zoom'] <- zoom
nums[1+zoom,'x'] <- num[1]
nums[1+zoom,'y'] <- num[2]
nums[1+zoom,'mapquest_osm'] <- paste('http://otile1.mqcdn.com/tiles/1.0.0/map/', zoom, '/', num[1], '/', num[2], '.jpg', sep='')
nums[1+zoom,'mapquest_aerial'] <- paste('http://otile1.mqcdn.com/tiles/1.0.0/sat/', zoom, '/', num[1], '/', num[2], '.jpg', sep='')
nums[1+zoom,'osm'] <- paste('https://a.tile.openstreetmap.org/', zoom, '/', num[1], '/', num[2], '.png', sep='')
}
return(nums)
}
lat_deg <- mean(TLVCityCentrebbox[2,])
lon_deg <- mean(TLVCityCentrebbox[1,])
tile <- deg2num(lat_deg,lon_deg,15)
tiles <- deg2num.all(lat_deg,lon_deg)
tile
TLVBuildingRaw <- GET(sprintf("https://data.osmbuildings.org/0.2/anonymous/tile/15/%s/%s.json",tile[1],tile[2]))
TLBBuildingContent <- content(TLVBuildingRaw, "text")
library(geojsonio)
TLBBuildingSp <- geojson_sp(TLVBuildingRaw)
TLBBuildingJSON
buildings <- rgdal::readOGR(TLBBuildingContent)
class(try1)
qtm(try1)
try1@data[which(try1@data$id=="488475407"),]
TLBBuildingContent
install.packages("slippymath")
library(slippymath)
#finding the relevant tiles for our area of interest
tiles <- bbox_to_tile_grid(TLVCityCentrebbox,zoom=15)
#cleaning the buildings object
buildings <-buildings[0,]
#iterating over the tiles and populating the buildings object
for(i in (1:nrow(tiles$tiles))){
getBuildingsRaw <- GET(sprintf("https://data.osmbuildings.org/0.2/anonymous/tile/15/%s/%s.json",
tiles$tiles[i,"x"],tiles$tiles[i,"y"]))
if (getBuildingsRaw$status_code != "200")
{
next
}
else
{
getBuildingsContent <- content(getBuildingsRaw, "text",encoding="UTF-8")
getBuildingsSp <- rgdal::readOGR(getBuildingsContent)
buildings <- bind(buildings,getBuildingsSp)
}
}
qtm(buildings)
che <- table(buildings$id)
che1 <- data.frame(che)
rm(che,che1)
#removing duplicates
buildings <- buildings[!duplicated(buildings@data),]
#cropping buildings by area of interest
buildingsCrop <- crop(buildings,TLVCityCentreUnionSpWGS84)
#projecting voronoi polygons to WGS84
buildingsCropWGS84 <- spTransform(buildingsCrop,CRS("+proj=longlat +datum=WGS84"))
qtm(buildingsCrop)
summary(buildingsCrop)
summary(vorWGS84)
#projecting voronoi polygons to WGS84
vorWGS84 <- spTransform(vor,CRS("+proj=longlat +datum=WGS84"))
#exctracting city centre voronoi polygons
filteredVorCityCentre <- vorWGS84[TLVCityCentreUnionSpWGS84,]
#projecting voronoi polygons to WGS84
filteredVorCityCentre <-spTransform(filteredVorCityCentre,CRS("+proj=longlat +datum=WGS84"))
#merging adjecent voronoi polygons who share the same chain
vorWGS84Union <- gUnaryUnion(filteredVorCityCentre, id = filteredVorCityCentre@data$chain_id)
#restoring data frame
row.names(vorWGS84Union) <- as.character(1:length(vorWGS84Union))
chain_ids <- unique(filteredVorCityCentre@data$chain_id)
chain_ids <- as.data.frame(chain_ids)
colnames(chain_ids) <- "catchment_chain_id"
vorWGS84Union <- SpatialPolygonsDataFrame(vorWGS84Union, chain_ids)
#splitting multipart polygons
vorWGS84UnionDis <- disaggregate(vorWGS84Union)
#adding a catchment id column
vorWGS84UnionDis@data$catchment_id <- 1:nrow(vorWGS84UnionDis@data)
#intersecting voronoi polygons and buildingsCrop
buildingsVoronoi <- intersect(buildingsCropWGS84,vorWGS84UnionDis)
#claculating area of each polygon (in square meters)
buildingsVoronoi@data$buildingArea <- area(buildingsVoronoi)
#summaring area by catchment_id
sumArea <- aggregate(buildingsVoronoi@data$buildingArea, by=list(catchment_id=buildingsVoronoi@data$catchment_id), FUN=sum)
colnames(sumArea) <- c("catchment_id","catchment_sum_area")
#joining sumArea to vorWGS84UnionDis
vorWGS84UnionDis@data <- data.frame(vorWGS84UnionDis@data,
sumArea[match(
vorWGS84UnionDis@data[,"catchment_id"],sumArea[,"catchment_id"]),])
#extracting stores in city centre
stores <- filteredStoressp[TLVCityCentreUnionSpWGS84,]
#joining prices to stores
stores@data <- data.frame(stores@data,
pricesDF[match(
stores@data[,"store_id"],pricesDF[,"storeIDs"]),])
#converting sp to sf for a spatial join
storesSF <- st_as_sf(stores)
catchmentSF <- st_as_sf(vorWGS84UnionDis)
sjoin <- sf::st_join(storesSF,catchmentSF)
#ommiting rows with missing price values
sjoinClean <- sjoin[!is.na(sjoin$pricesFloat),]
#tabular join for English chain Names
sjoinClean <- merge(sjoinClean,
chainNameDic,
by.x = "chain_name",
by.y = "chainNameHeb")
#converting sf to data.frame
sjoinCleanDF <- as.data.frame(sjoinClean)
p <- ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point()
p + facet_wrap(~cyl)
library(ggplot2)
library(sf)
try1 <- ggplot(data=sjoinCleanDF, aes(x=sjoinCleanDF$catchment_sum_area,
y=sjoinCleanDF$pricesFloat)) + geom_point()
try1 + facet_wrap(~chainNameEng)
#exporting sjoinClean to shapefile
st_write(obj = sjoinClean,
dsn = "C:/Users/jonat/Documents/GISModule/finalAssessment/export",
layer = "sjoinClean",
driver = "ESRI Shapefile")
cor(sjoinClean$catchment_sum_area,sjoinClean$pricesFloat)
qtm(sjoin)
library(maptools)
tmap_mode("view")
tm_shape(vorWGS84) +
tm_polygons("chain_name",alpha = 0.5)
tm_shape(vorWGS84UnionDis) +
tm_polygons(alpha = 0.5) +
tm_shape(buildingsVoronoi) +
tm_polygons(alpha = 1)
plot(sjoinClean$catchment_sum_area,
sjoinClean$pricesFloat)
nrow(sjoin)
nrow(sjoinClean)
install.packages("ggpubr")
library("ggpubr")
ggscatter(sjoinClean, x = "catchment_sum_area", y = "pricesFloat",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "Miles/(US) gallon", ylab = "Weight (1000 lbs)")
BoroughDataMap<-merge(BoroughMapSF,
LondonData,
by.x="GSS_CODE",
by.y="New.code",
no.dups = TRUE) chainNameDic$chainNameHeb