From 545af0e878f15cd41f10531bff41215a05cfb4c6 Mon Sep 17 00:00:00 2001 From: jorenham Date: Fri, 20 Dec 2024 23:18:09 +0100 Subject: [PATCH] =?UTF-8?q?=F0=9F=8E=A8=20`stats`:=201.15.0=20new=20disrib?= =?UTF-8?q?ution=20infrastructure=20cleanup?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../stats/_distribution_infrastructure.pyi | 410 +++++++++--------- .../stats/_probability_distribution.pyi | 1 + 2 files changed, 216 insertions(+), 195 deletions(-) diff --git a/scipy-stubs/stats/_distribution_infrastructure.pyi b/scipy-stubs/stats/_distribution_infrastructure.pyi index 013f4cd1..7f801edd 100644 --- a/scipy-stubs/stats/_distribution_infrastructure.pyi +++ b/scipy-stubs/stats/_distribution_infrastructure.pyi @@ -16,14 +16,55 @@ from ._probability_distribution import _BaseDistribution # TODO: # `__all__ = ["Mixture", "abs", "exp", "log", "make_distribution", "order_statistic", "truncate"] -_FloatT = TypeVar("_FloatT", bound=np.floating[Any]) +_Float: TypeAlias = np.float64 | np.longdouble +_FloatingT = TypeVar("_FloatingT", bound=np.floating[Any], default=np.floating[Any]) +_FloatingT_co = TypeVar("_FloatingT_co", bound=np.floating[Any], default=np.floating[Any], covariant=True) +_RealT = TypeVar("_RealT", bound=np.floating[Any] | np.integer[Any], default=np.floating[Any] | np.integer[Any]) +_RealT_co = TypeVar( + "_RealT_co", + bound=np.floating[Any] | np.integer[Any], + default=np.floating[Any] | np.integer[Any], + covariant=True, +) + +_ShapeT0 = TypeVar("_ShapeT0", bound=tuple[int, ...], default=tuple[int, ...]) +_ShapeT1 = TypeVar("_ShapeT1", bound=onp.AtLeast1D, default=onp.AtLeast1D) +_ShapeT0_co = TypeVar("_ShapeT0_co", bound=tuple[int, ...], default=tuple[int, ...], covariant=True) + +_CDistT0 = TypeVar("_CDistT0", bound=_CDist0) +_CDistT1 = TypeVar("_CDistT1", bound=ContinuousDistribution[np.floating[Any], tuple[int]]) +_CDistT2 = TypeVar("_CDistT2", bound=ContinuousDistribution[np.floating[Any], tuple[int, int]]) +_CDistT3 = TypeVar("_CDistT3", bound=ContinuousDistribution[np.floating[Any], tuple[int, int, int]]) +_CDistT = TypeVar("_CDistT", bound=ContinuousDistribution) +_CDistT_co = TypeVar("_CDistT_co", bound=ContinuousDistribution, default=ContinuousDistribution, covariant=True) + +# placeholder for `matplotlib.axes.Axes` +_Axes: TypeAlias = object +_AxesT = TypeVar("_AxesT", bound=_Axes, default=Any) + +### +_JustFloat: TypeAlias = opt.Just[float] | np.floating[Any] +_Null: TypeAlias = opt.Just[object] + +_DomainRegion: TypeAlias = L["domain", "typical"] +_DomainDrawType: TypeAlias = L["in", "out", "on", "nan"] _ValidationPolicy: TypeAlias = L["skip_all"] | None _CachePolicy: TypeAlias = L["no_cache"] | None +_PlotQuantity: TypeAlias = L["x", "pdf", "cdf", "ccdf", "icdf", "iccdf", "logpdf", "logcdf", "logccdf", "ilogcdf", "ilogccdf"] +_SMomentMethod: TypeAlias = L["formula", "general", "transform", "normalize", "cache"] + +_ParamValues: TypeAlias = Mapping[str, onp.ToFloat | onp.ToFloatND] +_ToDomain: TypeAlias = _Domain | tuple[onp.ToFloat | str, onp.ToFloat | str] +_DrawProportions: TypeAlias = tuple[onp.ToFloat, onp.ToFloat, onp.ToFloat, onp.ToFloat] + +_CDist0: TypeAlias = ContinuousDistribution[np.floating[Any], tuple[()]] ### -# TODO(jorenham): Generic dtype +_null: Final[_Null] = ... + +# TODO(jorenham): Generic dtype and shape class _Domain(abc.ABC): # NOTE: This is a `ClassVar[dict[str, float]]` that's overridden as instance attribute in `_SimpleDomain`. # https://github.com/scipy/scipy/pull/22139 @@ -32,73 +73,73 @@ class _Domain(abc.ABC): @abc.abstractmethod @override def __str__(self, /) -> str: ... - - # @abc.abstractmethod def contains(self, /, x: onp.ArrayND[Any]) -> onp.ArrayND[np.bool_]: ... - - # @abc.abstractmethod - def draw(self, /, n: int) -> onp.ArrayND[np.float64]: ... - - # + def draw(self, /, n: int) -> onp.ArrayND[_FloatingT]: ... @abc.abstractmethod def get_numerical_endpoints( self, /, - x: Mapping[str, onp.ToFloat | onp.ToFloatND], - ) -> tuple[onp.ArrayND[np.float64], onp.ArrayND[np.float64]]: ... + x: _ParamValues, + ) -> tuple[onp.ArrayND[_Float], onp.ArrayND[_Float]]: ... # TODO(jorenham): Generic dtype class _SimpleDomain(_Domain, metaclass=abc.ABCMeta): - def __init__(self, /, endpoints: tuple[float, float] = ..., inclusive: tuple[bool, bool] = (False, False)) -> None: ... - @override - def __str__(self, /) -> str: ... # noqa: PYI029 - - # - def define_parameters(self, /, *parameters: _Parameter) -> None: ... + def __init__( + self, + /, + endpoints: tuple[onp.ToFloat | str, onp.ToFloat | str] = ..., + inclusive: tuple[bool, bool] = (False, False), + ) -> None: ... # @override + def __str__(self, /) -> str: ... # noqa: PYI029 + @override def get_numerical_endpoints( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] self, /, - parameter_values: Mapping[str, onp.ToFloat | onp.ToFloatND], - ) -> tuple[onp.ArrayND[np.float64], onp.ArrayND[np.float64]]: ... - - # + parameter_values: _ParamValues, + ) -> tuple[onp.ArrayND[_Float], onp.ArrayND[_Float]]: ... @override def contains( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] self, /, item: onp.ArrayND[np.integer[Any] | np.floating[Any]], - parameter_values: Mapping[str, onp.ToFloat | onp.ToFloatND] | None = None, + parameter_values: _ParamValues | None = None, ) -> onp.ArrayND[np.bool_]: ... + # + def define_parameters(self, /, *parameters: _Parameter) -> None: ... + class _RealDomain(_SimpleDomain): @override def draw( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] self, /, n: int, - type_: L["in", "out", "on", "nan"], - min: onp.ArrayND[np.floating[Any]], - max: onp.ArrayND[np.floating[Any]], + type_: _DomainDrawType, + min: onp.ArrayND[np.floating[Any] | np.integer[Any]], + max: onp.ArrayND[np.floating[Any] | np.integer[Any]], squeezed_base_shape: tuple[int, ...], rng: ToRNG = None, ) -> onp.ArrayND[np.float64]: ... +_ParamValidated0D: TypeAlias = tuple[_RealT, np.dtype[_RealT], onp.Array0D[np.bool_]] +_ParamValidatedND: TypeAlias = tuple[onp.ArrayND[_RealT, _ShapeT1], np.dtype[_RealT], onp.ArrayND[np.bool_, _ShapeT1]] + # -class _Parameter(abc.ABC): - def __init__( - self, - /, - name: str, - *, - domain: _Domain, - symbol: str | None = None, - typical: _Domain | tuple[int | str, int | str] | None = None, - ) -> None: ... +class _Parameter(abc.ABC, Generic[_RealT_co]): + def __init__(self, /, name: str, *, domain: _Domain, symbol: str | None = None, typical: _ToDomain | None = None) -> None: ... + + # + @overload + @abc.abstractmethod + def validate(self, /, arr: onp.ToFloat) -> _ParamValidated0D[_RealT_co]: ... + @overload + @abc.abstractmethod + def validate(self, /, arr: onp.ToFloatND) -> _ParamValidatedND[_RealT_co]: ... # def draw( @@ -107,82 +148,46 @@ class _Parameter(abc.ABC): size: tuple[int, ...] | None = None, *, rng: ToRNG = None, - region: L["domain", "typical"] = "domain", - proportions: tuple[onp.ToFloat, onp.ToFloat, onp.ToFloat, onp.ToFloat] | None = None, - parameter_values: Mapping[str, onp.ToFloat | onp.ToFloatND] | None = None, - ) -> onp.ArrayND[np.float64]: ... - - # - @overload - @abc.abstractmethod - def validate(self, /, arr: onp.ToFloat) -> tuple[_FloatT, np.dtype[_FloatT], onp.Array0D[np.bool_]]: ... - @overload - @abc.abstractmethod - def validate(self, /, arr: onp.ToFloatND) -> tuple[onp.ArrayND[_FloatT], np.dtype[_FloatT], onp.ArrayND[np.bool_]]: ... + region: _DomainRegion = "domain", + proportions: _DrawProportions | None = None, + parameter_values: _ParamValues | None = None, + ) -> onp.ArrayND[_RealT_co]: ... -class _RealParameter(_Parameter): +class _RealParameter(_Parameter[_FloatingT_co], Generic[_FloatingT_co]): @overload # type: ignore[override] - def validate( - self, - /, - arr: onp.ToFloat, - parameter_values: Mapping[str, onp.ToFloat | onp.ToFloatND], - ) -> tuple[_FloatT, np.dtype[_FloatT], onp.Array0D[np.bool_]]: ... + def validate(self, /, arr: onp.ToFloat, parameter_values: _ParamValues) -> _ParamValidated0D[_FloatingT_co]: ... @overload - def validate( # pyright: ignore[reportIncompatibleMethodOverride] - self, - /, - arr: onp.ToFloatND, - parameter_values: Mapping[str, onp.ToFloat | onp.ToFloatND], - ) -> tuple[onp.ArrayND[_FloatT], np.dtype[_FloatT], onp.ArrayND[np.bool_]]: ... + def validate(self, /, arr: onp.ToFloatND, parameter_values: _ParamValues) -> _ParamValidatedND[_FloatingT_co]: ... # pyright: ignore[reportIncompatibleMethodOverride] class _Parameterization: parameters: Final[Mapping[str, _Parameter]] def __init__(self, /, *parameters: _Parameter) -> None: ... def __len__(self, /) -> int: ... - def copy(self, /) -> _Parameterization: ... + def copy(self, /) -> Self: ... def matches(self, /, parameters: AbstractSet[str]) -> bool: ... def validation( self, /, parameter_values: Mapping[str, _Parameter], - ) -> tuple[onp.ArrayND[np.bool_] | np.dtype[np.floating[Any]]]: ... + ) -> tuple[onp.ArrayND[np.bool_], np.dtype[np.floating[Any]]]: ... def draw( self, /, sizes: tuple[int, ...] | Sequence[tuple[int, ...]] | None = None, rng: ToRNG = None, - proportions: tuple[onp.ToFloat, onp.ToFloat, onp.ToFloat, onp.ToFloat] | None = None, - region: L["domain", "typical"] = "domain", - ) -> dict[str, onp.ArrayND[np.float64]]: ... + proportions: _DrawProportions | None = None, + region: _DomainRegion = "domain", + ) -> dict[str, onp.ArrayND[np.floating[Any]]]: ... ### -_XT = TypeVar("_XT", bound=np.inexact[Any]) -_XT_co = TypeVar("_XT_co", bound=np.inexact[Any], default=np.float64, covariant=True) -_ShapeT0 = TypeVar("_ShapeT0", bound=tuple[int, ...]) -_ShapeT0_co = TypeVar("_ShapeT0_co", bound=tuple[int, ...], default=tuple[int, ...], covariant=True) -_DistrT_co = TypeVar( - "_DistrT_co", - bound=ContinuousDistribution[np.inexact[Any]], - default=ContinuousDistribution[np.inexact[Any]], - covariant=True, -) - -# placeholder for `matplotlib.axes.Axes` -_Axes: TypeAlias = object -_AxesT = TypeVar("_AxesT", bound=_Axes, default=Any) - -_PlotQuantity: TypeAlias = L["x", "cdf", "ccdf", "icdf", "iccdf", "logcdf", "logccdf", "ilogcdf", "ilogccdf"] - -_JustFloat: TypeAlias = opt.Just[float] | np.floating[Any] -_Null: TypeAlias = opt.Just[object] - -_null: Final[_Null] = ... - -class ContinuousDistribution(_BaseDistribution[_XT_co, _ShapeT0_co], Generic[_XT_co, _ShapeT0_co]): +class ContinuousDistribution(_BaseDistribution[_FloatingT_co, _ShapeT0_co], Generic[_FloatingT_co, _ShapeT0_co]): __array_priority__: ClassVar[float] = 1 + _parameterizations: ClassVar[Sequence[_Parameterization]] + + _not_implemented: Final[str] + _original_parameters: dict[str, _FloatingT_co | onp.ArrayND[_FloatingT_co, _ShapeT0_co]] @property def tol(self, /) -> float | np.float64 | _Null | None: ... @@ -210,15 +215,24 @@ class ContinuousDistribution(_BaseDistribution[_XT_co, _ShapeT0_co], Generic[_XT ) -> None: ... # - def __neg__(self, /) -> ShiftedScaledDistribution[Self, _XT_co, _ShapeT0_co]: ... - def __abs__(self, /) -> FoldedDistribution[Self, _XT_co, _ShapeT0_co]: ... + def _update_parameters( + self, + /, + *, + validation_policy: _ValidationPolicy = None, + **params: onp.ToFloat | onp.ToFloatND, + ) -> None: ... + + # + def __neg__(self, /) -> ShiftedScaledDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... + def __abs__(self, /) -> FoldedDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... # TODO(jorenham): Accept `onp.ToFloatND`? - def __add__(self, rshift: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _XT_co, _ShapeT0_co]: ... - def __sub__(self, lshift: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _XT_co, _ShapeT0_co]: ... - def __mul__(self, scale: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _XT_co, _ShapeT0_co]: ... - def __truediv__(self, iscale: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _XT_co, _ShapeT0_co]: ... - def __pow__(self, exp: onp.ToInt, /) -> MonotonicTransformedDistribution[Self, _XT_co, _ShapeT0_co]: ... + def __add__(self, rshift: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... + def __sub__(self, lshift: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... + def __mul__(self, scale: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... + def __truediv__(self, iscale: onp.ToFloat, /) -> ShiftedScaledDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... + def __pow__(self, exp: onp.ToInt, /) -> MonotonicTransformedDistribution[Self, _FloatingT_co, _ShapeT0_co]: ... __radd__ = __add__ __rsub__ = __sub__ __rmul__ = __mul__ @@ -231,43 +245,69 @@ class ContinuousDistribution(_BaseDistribution[_XT_co, _ShapeT0_co], Generic[_XT # def plot( self, - x: str = "x", - y: str = "pdf", + x: _PlotQuantity = "x", + y: _PlotQuantity = "pdf", *, t: tuple[_PlotQuantity, _JustFloat, _JustFloat] = ("cdf", 0.0005, 0.9995), ax: _AxesT | None = None, ) -> _AxesT: ... # + # NOTE: This is currently (1.15.0rc1) behaving kinda weird, see https://github.com/scipy/scipy/issues/22146 + @overload + def llf(self, sample: onp.ToFloat | onp.ToFloatND, /, *, axis: None) -> _Float: ... @overload - def llf(self, sample: onp.ToFloat | onp.ToFloatND, /, *, axis: None) -> np.float64: ... + def llf(self: _CDist0, sample: onp.ToFloat | onp.ToFloatStrict1D, /, *, axis: AnyShape | None = -1) -> _Float: ... @overload - def llf(self, sample: onp.ToFloat | onp.ToFloatStrict1D, /, *, axis: AnyShape | None = -1) -> np.float64: ... + def llf( + self: ContinuousDistribution[np.floating[Any], _ShapeT1], + sample: onp.ToFloat | onp.ToFloatStrict1D, + /, + *, + axis: AnyShape = -1, + ) -> onp.ArrayND[_Float, _ShapeT1]: ... @overload - def llf(self, sample: onp.ToFloatStrict2D, /, *, axis: op.CanIndex | tuple[op.CanIndex] = -1) -> onp.Array1D[np.float64]: ... + def llf( + self: _CDist0, + sample: onp.ToFloatStrict2D, + /, + *, + axis: op.CanIndex | tuple[op.CanIndex] = -1, + ) -> onp.Array1D[_Float]: ... @overload - def llf(self, sample: onp.ToFloatStrict2D, /, *, axis: tuple[op.CanIndex, op.CanIndex]) -> np.float64: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict2D, /, *, axis: tuple[op.CanIndex, op.CanIndex]) -> _Float: ... @overload - def llf(self, sample: onp.ToFloatStrict3D, /, *, axis: op.CanIndex | tuple[op.CanIndex] = -1) -> onp.Array2D[np.float64]: ... + def llf( + self: _CDist0, + sample: onp.ToFloatStrict3D, + /, + *, + axis: op.CanIndex | tuple[op.CanIndex] = -1, + ) -> onp.Array2D[_Float]: ... @overload - def llf(self, sample: onp.ToFloatStrict3D, /, *, axis: tuple[op.CanIndex, op.CanIndex]) -> onp.Array1D[np.float64]: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: tuple[op.CanIndex, op.CanIndex]) -> onp.Array1D[_Float]: ... @overload - def llf(self, sample: onp.ToFloatStrict3D, /, *, axis: tuple[op.CanIndex, op.CanIndex, op.CanIndex]) -> np.float64: ... + def llf(self: _CDist0, sample: onp.ToFloatStrict3D, /, *, axis: tuple[op.CanIndex, op.CanIndex, op.CanIndex]) -> _Float: ... @overload def llf( - self, + self: ContinuousDistribution[np.floating[Any], onp.AtLeast1D], sample: onp.ToFloat | onp.ToFloatND, /, *, - axis: AnyShape | None = -1, - ) -> np.float64 | onp.ArrayND[np.float64]: ... + axis: AnyShape = -1, + ) -> onp.ArrayND[_Float]: ... + @overload + def llf(self, sample: onp.ToFloat | onp.ToFloatND, /, *, axis: AnyShape | None = -1) -> _Float | onp.ArrayND[_Float]: ... # -class TransformedDistribution(ContinuousDistribution[_XT_co, _ShapeT0_co], Generic[_DistrT_co, _XT_co, _ShapeT0_co]): +class TransformedDistribution( + ContinuousDistribution[_FloatingT_co, _ShapeT0_co], + Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], +): def __init__( - self: TransformedDistribution[ContinuousDistribution[_XT, _ShapeT0], _XT, _ShapeT0], # nice trick, eh? - X: _DistrT_co, + self: TransformedDistribution[ContinuousDistribution[_FloatingT, _ShapeT0], _FloatingT, _ShapeT0], # nice trick, eh? + X: _CDistT_co, /, *args: Never, tol: opt.Just[float] | _Null = ..., @@ -276,70 +316,23 @@ class TransformedDistribution(ContinuousDistribution[_XT_co, _ShapeT0_co], Gener ) -> None: ... class MonotonicTransformedDistribution( - TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0_co], - Generic[_DistrT_co, _XT_co, _ShapeT0_co], + TransformedDistribution[_CDistT_co, _FloatingT_co, _ShapeT0_co], + Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], ): # TODO(jorenham) ... -_DistrT0f = TypeVar("_DistrT0f", bound=ContinuousDistribution[np.floating[Any], tuple[()]]) -_DistrT1f = TypeVar("_DistrT1f", bound=ContinuousDistribution[np.floating[Any], tuple[int]]) -_DistrT2f = TypeVar("_DistrT2f", bound=ContinuousDistribution[np.floating[Any], tuple[int, int]]) -_DistrT3f = TypeVar("_DistrT3f", bound=ContinuousDistribution[np.floating[Any], tuple[int, int, int]]) -_DistrTNf = TypeVar("_DistrTNf", bound=ContinuousDistribution[np.floating[Any], tuple[int, ...]]) - -# still waiting on the intersection type PEP... -@overload -def truncate( - X: _DistrT0f, - lb: onp.ToFloat = ..., - ub: onp.ToFloat = ..., -) -> TruncatedDistribution[_DistrT0f, np.floating[Any], tuple[()]]: ... -@overload -def truncate( - X: _DistrT1f, - lb: onp.ToFloat | onp.ToFloatStrict1D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D = ..., -) -> TruncatedDistribution[_DistrT1f, np.floating[Any], tuple[int]]: ... -@overload -def truncate( - X: _DistrT2f, - lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., -) -> TruncatedDistribution[_DistrT2f, np.floating[Any], tuple[int, int]]: ... -@overload -def truncate( - X: _DistrT3f, - lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., - ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., -) -> TruncatedDistribution[_DistrT3f, np.floating[Any], tuple[int, int, int]]: ... -@overload -def truncate( - X: _DistrTNf, - lb: onp.ToFloat | onp.ToFloatND = ..., - ub: onp.ToFloat | onp.ToFloatND = ..., -) -> TruncatedDistribution[_DistrTNf, np.floating[Any], tuple[int, ...]]: ... -@overload -def truncate( - X: ContinuousDistribution[_XT, _ShapeT0], - lb: onp.ToFloat = ..., - ub: onp.ToFloat = ..., -) -> TruncatedDistribution[ContinuousDistribution[_XT, _ShapeT0], _XT, _ShapeT0]: ... -@overload -def truncate( - X: ContinuousDistribution[_XT], - lb: onp.ToFloat | onp.ToFloatND = ..., - ub: onp.ToFloat | onp.ToFloatND = ..., -) -> TruncatedDistribution[ContinuousDistribution[_XT], _XT]: ... - -class TruncatedDistribution(TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0_co], Generic[_DistrT_co, _XT_co, _ShapeT0_co]): - lb: _XT_co | onp.ArrayND[_XT_co, _ShapeT0_co] - ub: _XT_co | onp.ArrayND[_XT_co, _ShapeT0_co] +class TruncatedDistribution( + TransformedDistribution[_CDistT_co, _FloatingT_co, _ShapeT0_co], + Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], +): + lb: _FloatingT_co | onp.ArrayND[_FloatingT_co, _ShapeT0_co] + ub: _FloatingT_co | onp.ArrayND[_FloatingT_co, _ShapeT0_co] @overload def __init__( - self: TruncatedDistribution[_DistrT0f, np.floating[Any], tuple[()]], - X: _DistrT0f, + self: TruncatedDistribution[_CDistT0, np.floating[Any], tuple[()]], + X: _CDistT0, /, *args: Never, lb: onp.ToFloat = ..., @@ -350,8 +343,8 @@ class TruncatedDistribution(TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0 ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_DistrT1f, np.floating[Any], tuple[int]], - X: _DistrT1f, + self: TruncatedDistribution[_CDistT1, np.floating[Any], tuple[int]], + X: _CDistT1, /, *args: Never, lb: onp.ToFloat | onp.ToFloatStrict1D = ..., @@ -362,8 +355,8 @@ class TruncatedDistribution(TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0 ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_DistrT2f, np.floating[Any], tuple[int, int]], - X: _DistrT2f, + self: TruncatedDistribution[_CDistT2, np.floating[Any], tuple[int, int]], + X: _CDistT2, /, *args: Never, lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., @@ -374,8 +367,8 @@ class TruncatedDistribution(TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0 ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_DistrT3f, np.floating[Any], tuple[int, int, int]], - X: _DistrT3f, + self: TruncatedDistribution[_CDistT3, np.floating[Any], tuple[int, int, int]], + X: _CDistT3, /, *args: Never, lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., @@ -386,8 +379,8 @@ class TruncatedDistribution(TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0 ) -> None: ... @overload def __init__( - self: TruncatedDistribution[_DistrTNf, np.floating[Any], tuple[int, ...]], - X: _DistrTNf, + self: TruncatedDistribution[_CDistT, np.floating[Any], tuple[int, ...]], + X: _CDistT, /, *args: Never, lb: onp.ToFloat | onp.ToFloatND = ..., @@ -398,49 +391,76 @@ class TruncatedDistribution(TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0 ) -> None: ... class FoldedDistribution( - TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0_co], - Generic[_DistrT_co, _XT_co, _ShapeT0_co], + TransformedDistribution[_CDistT_co, _FloatingT_co, _ShapeT0_co], + Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], ): # TODO(jorenham) ... class ShiftedScaledDistribution( - TransformedDistribution[_DistrT_co, _XT_co, _ShapeT0_co], - Generic[_DistrT_co, _XT_co, _ShapeT0_co], + TransformedDistribution[_CDistT_co, _FloatingT_co, _ShapeT0_co], + Generic[_CDistT_co, _FloatingT_co, _ShapeT0_co], ): # TODO(jorenham) ... -class OrderStatisticDistribution(TransformedDistribution[_DistrT_co, np.float64, _ShapeT0_co], Generic[_DistrT_co, _ShapeT0_co]): +class OrderStatisticDistribution(TransformedDistribution[_CDistT_co, np.float64, _ShapeT0_co], Generic[_CDistT_co, _ShapeT0_co]): # TODO(jorenham) ... -class Mixture(_BaseDistribution[_XT_co, tuple[()]], Generic[_XT_co]): +class Mixture(_BaseDistribution[_FloatingT_co, tuple[()]], Generic[_FloatingT_co]): _shape: tuple[()] - _dtype: np.dtype[_XT_co] - _components: Sequence[ContinuousDistribution[_XT_co, tuple[()]]] - _weights: onp.Array1D[_XT_co] + _dtype: np.dtype[_FloatingT_co] + _components: Sequence[ContinuousDistribution[_FloatingT_co, tuple[()]]] + _weights: onp.Array1D[_FloatingT_co] validation_policy: None @property - def components(self, /) -> list[ContinuousDistribution[_XT_co, tuple[()]]]: ... + def components(self, /) -> list[ContinuousDistribution[_FloatingT_co, tuple[()]]]: ... @property - def weights(self, /) -> onp.Array1D[_XT_co]: ... + def weights(self, /) -> onp.Array1D[_FloatingT_co]: ... # def __init__( self, /, - components: Sequence[ContinuousDistribution[_XT_co, tuple[()]]], + components: Sequence[ContinuousDistribution[_FloatingT_co, tuple[()]]], *, weights: onp.ToFloat1D | None = None, ) -> None: ... - - # @override - def kurtosis( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] - self, - /, - *, - method: L["formula", "general", "transform", "normalize", "cache"] | None = None, - ) -> np.float64 | np.longdouble: ... + def kurtosis(self, /, *, method: _SMomentMethod | None = None) -> _Float: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + +### + +# still waiting on the intersection type PEP... +@overload +def truncate( + X: _CDistT0, + lb: onp.ToFloat = ..., + ub: onp.ToFloat = ..., +) -> TruncatedDistribution[_CDistT0, np.floating[Any], tuple[()]]: ... +@overload +def truncate( + X: _CDistT1, + lb: onp.ToFloat | onp.ToFloatStrict1D = ..., + ub: onp.ToFloat | onp.ToFloatStrict1D = ..., +) -> TruncatedDistribution[_CDistT1, np.floating[Any], tuple[int]]: ... +@overload +def truncate( + X: _CDistT2, + lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., + ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D = ..., +) -> TruncatedDistribution[_CDistT2, np.floating[Any], tuple[int, int]]: ... +@overload +def truncate( + X: _CDistT3, + lb: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., + ub: onp.ToFloat | onp.ToFloatStrict1D | onp.ToFloatStrict2D | onp.ToFloatStrict3D = ..., +) -> TruncatedDistribution[_CDistT3, np.floating[Any], tuple[int, int, int]]: ... +@overload +def truncate( + X: _CDistT, + lb: onp.ToFloat | onp.ToFloatND = ..., + ub: onp.ToFloat | onp.ToFloatND = ..., +) -> TruncatedDistribution[_CDistT, np.floating[Any], tuple[int, ...]]: ... diff --git a/scipy-stubs/stats/_probability_distribution.pyi b/scipy-stubs/stats/_probability_distribution.pyi index 1897a317..2b6a8a3b 100644 --- a/scipy-stubs/stats/_probability_distribution.pyi +++ b/scipy-stubs/stats/_probability_distribution.pyi @@ -313,6 +313,7 @@ class _BaseDistribution(_ProbabilityDistribution[_XT_co], Generic[_XT_co, _Shape def logentropy(self: _Self[Any, _ShapeT], /, *, method: _EntropyMethod = None) -> _ComplexND[_ShapeT]: ... # + # TODO(jorenham): Adjust these, depending on the result of https://github.com/scipy/scipy/issues/22145 # NOTE: The signatures of `pdf` and `logpdf` are equivalent @overload # self: T1-d, x: 0-d def pdf(self: _Self[Any, _ShapeT], x: onp.ToFloat, /, *, method: _PDFMethod = None) -> _FloatND[_ShapeT]: ...