-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbinary_svm.py
87 lines (71 loc) · 2.88 KB
/
binary_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Support Vector Machine (SVM)
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
# Importing the dataset
with open("./trained_models/SVM_dataset/SVM_dataset_2D", "rb") as f:
SVM_dataset = pickle.load(f)
f.close()
FG_NUPS = SVM_dataset[0:1365]
PDB = SVM_dataset[1365:]
PDB = np.column_stack((PDB , len(PDB)*[0]))
FG_NUPS = np.column_stack((FG_NUPS , len(FG_NUPS)*[1]))
dataset = np.vstack((PDB,FG_NUPS))
X = dataset[:, [0, 1]]
print X
y = dataset[:, 2]
print y
print dataset
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Fitting SVM to the Training set
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
classifier = SVC(kernel = 'linear', random_state = 0)
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
print ("accuracy_score : " , accuracy_score(y_test, y_pred))
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
maker_size=1
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
maker_size,c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('SVM (Training set)')
plt.legend()
plt.show()
# Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
maker_size = 1
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j,1],
maker_size,c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('SVM (Test set)')
plt.legend()
plt.show()