quicklook
is a Python program that runs a simple pipeline to search for transit signal in TESS (and Kepler soon) light curves. This program can be run in a jupyter notebook or from the terminal using the ql
script.
Given target name, run periodograms on a TESS or Kepler lightcurve (if it exists) to measure the stellar rotation period and the orbital period of a potential companion i.e. planet, brown dwarf, or star.
Although quicklook
is optimized to find transiting exoplanets, this tool can also find eclipsing binaries and many other periodic signals.
Create a conda environment called, say my_env
, and install there the latest version of quicklook-package
$ conda create -n my_env python=3.10
$ conda activate my_env
(my_env) $ pip install -U quicklook-package
If you want to run quicklook
locally in a notebook, you also need to install jupyter
(my_env) $ pip install jupyter notebook
See example notebook.
(my_env) $ ql
usage: ql [-h] [--name NAME] [--sector SECTOR] [--fluxtype {pdcsap,sap}] [--pipeline {spoc,tess-spoc,tasoc,cdips,pathos,qlp,tglc}] [--exptime EXPTIME] [--flatten_method FLATTEN_METHOD] [--pg_method {gls,ls,bls}]
[--window_length WINDOW_LENGTH] [--edge_cutoff EDGE_CUTOFF] [--sigma_clip_raw SIGMA_CLIP_RAW SIGMA_CLIP_RAW] [--sigma_clip_flat SIGMA_CLIP_FLAT SIGMA_CLIP_FLAT]
[--period_limits PERIOD_LIMITS PERIOD_LIMITS] [--survey {dss1,poss2ukstu_red,poss2ukstu_ir,poss2ukstu_blue,poss1_blue,poss1_red,all,quickv,phase2_gsc2,phase2_gsc1}]
[--custom_ephem CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM] [--outdir OUTDIR] [-save] [-verbose] [-overwrite] [-mask_ephem]
Run a quick look analysis of a TESS lightcurve.
Notes:
* use single hyphen (-flag) if no value is needed.
* use double hyphen (--flag value) if value is needed.
Example: ql --name TOI-5071 --sector 46 -save -verbose
options:
-h, --help show this help message and exit
--name NAME target name
--sector SECTOR TESS sector (default=-1 (last available sector))
--fluxtype {pdcsap,sap}
type of lightcurve
--pipeline {spoc,tess-spoc,tasoc,cdips,pathos,qlp,tglc}
lightcurve produced from which pipeline (default=SPOC)
--exptime EXPTIME exposure time (default is whatever is used in available sector)
--flatten_method FLATTEN_METHOD
wotan flatten method (default=biweight)
--pg_method {gls,ls,bls}
periodogran method (default=gls)
--window_length WINDOW_LENGTH
flatten method window length (default=0.5 days)
--edge_cutoff EDGE_CUTOFF
cut each edges (default=0.1 days)
--sigma_clip_raw SIGMA_CLIP_RAW SIGMA_CLIP_RAW
(sigma_lo,sigma_hi) for outlier rejection of raw lc before flattening/detrending
--sigma_clip_flat SIGMA_CLIP_FLAT SIGMA_CLIP_FLAT
(sigma_lo,sigma_hi) for outlier rejection of flattened/detrended lc
--period_limits PERIOD_LIMITS PERIOD_LIMITS
period limits in TLS search; default=(0.5, baseline/2) d
--survey {dss1,poss2ukstu_red,poss2ukstu_ir,poss2ukstu_blue,poss1_blue,poss1_red,all,quickv,phase2_gsc2,phase2_gsc1}
archival image survey name if using img option (default=dss1)
--custom_ephem CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM CUSTOM_EPHEM
custom ephemeris in days. Example: --custom_ephem Tc Tcerr P Perr Tdur Tdurerr
--outdir OUTDIR output directory
-save save figure and tls
-verbose show details
-overwrite overwrite files
-mask_ephem mask transits either using TFOP or custom ephemerides if available (default=False)
- Run
quicklook
on the most recent TESS lightcurve of TOI-5071 (aka K2-100).
(my_env) $ ql --name TOI-5071
The figure above shows 9 panels. Let's break them down.
- top row
- left (panel 1): raw lightcurve (blue marker) and trend (red line)
- middle (panel 2): Lomb-Scargle periodogram used to estimate the star's rotation period; this is useful to find active and variable stars
- right (panel 3): raw lightcurve phase-folded at the computed peak of Lomb-Scargle periodogram (corresponding to the stellar rotation period) from panel 1;
- middle row
- left (panel 4): raw lightcurve divided by the trend line (aka flattened lightcurve) in panel 1 and the detected transits (red markers; determined from the TLS periodogram in panel 5)
- middle (panel 5): periodogram using the transit least squares (TLS) algorithm
- right (panel 6): TESS aperture (blue polygon) centered on the target and the positions of nearby sources from the Gaia survey (orange and red markers) overlaid on the archival DSS image; this is useful to see if there are other stars that can be the source of the signal aside from the target
- bottom row
- left (panel 7): phase-folded lightcurve at the derived peak of TLS periodogram (corresponding to the orbital period); odd (red markers) and even (blue markers) transits and best-fit transit model (black line) are also shown
- middle (panel 8): phase-folded lightcurve zoomed at phase=0.5 to check for a secondary eclipse which is a strong indicator of a self-luminous companion such as an eclipsing binary or a high-albedo brown dwarf; the computed transit depth (horizontal dashed line) and transit duration (vertical dashed line) are shown for reference
- right (panel 9): summary info about the star and potential companion (e.g. planet candidate)
Try changing the parameters:
(my_env) $ ql --name TIC-52368076 -verbose -save | tee output.log
(my_env) $ ql --name TOI-125.01 --pipeline qlp #specific pipeline
(my_env) $ ql --name TOI-125.01 --sector 2 #specific TESS sector
(my_env) $ ql --name TOI-125.01 --flatten_method cosine #specific function to detrend baseline
(my_env) $ ql --name TOI-125.01 --period_limits 1 5 #limit search between 1-5 days
If you would like to run ql
on a list of TIC IDs (saved as tic_ids.txt
), then you can make a batch script named run_ql_given_tic.batch
. The output files containing the logs (.log), plots (.png), and periodogram results (*_tls.h5) will be saved in tic_dir
directory:
(my_env) $ cat tic_ids.txt | while read tic; do echo ql --name TIC$tic -save --outdir tic_dir | tee TIC$tic.log; done > run_ql_given_tic.batch
To test the Nth line of the batch script,
(my_env) $ cat run_ql_given_tic.batch | sed -n Np | sh
To run all the lines in parallel using GNU parallel with N cores,
(my_env) $ cat run_ql_given_tic.batch | parallel -j N
After the batch script is done running, we can rank ql
output in terms of Signal Detection Efficiency (SDE, See Hippke et al. 2019) using read_tls
script:
(my_env) $ read_tls tic_dir