diff --git a/README.Rmd b/README.Rmd index a3cf586..ec42ec6 100644 --- a/README.Rmd +++ b/README.Rmd @@ -115,7 +115,8 @@ scLANE_models_glm <- testDynamic(sim_data, pt = order_df, genes = gene_sample, size.factor.offset = cell_offset, - n.cores = 4) + n.cores = 4, + verbose = FALSE) ``` After the function finishes running, we use `getResultsDE()` to generate a sorted table of DE test results, with one row for each gene & lineage. The GLM mode uses a simple likelihood ratio test to compare the null & alternate models, with the test statistic assumed to be [asymptotically Chi-squared distributed](https://en.wikipedia.org/wiki/Likelihood-ratio_test).