-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy path09-Figures.R
253 lines (211 loc) · 11.4 KB
/
09-Figures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#####################
# This is simply used to output a few of the
# results from the Python work because I happen
# to prefer the 'look' of ggplot2 to Seaborn for
# scientific visualisation.
#####################
devtools::install_github("tidyverse/ggplot2", ref = "sf")
devtools::install_github("r-spatial/sfr")
library(sf)
library(ggplot2)
library(data.table, warn.conflicts = FALSE)
library(dtplyr)
library(scales)
library(grid)
library(gridExtra)
target.crs = 27700
setwd(file.path(path.expand('~'),'Documents','github','ml-gent'))
base.path = file.path('.','data','analytical')
model.name = 'Untransformed' # One of: Untransformed, Box-Cox or Log
#######################
# First, let's output the
# results from exploring the
# hyperparameters
#######################
# n_estimators
n.estimators <- fread( file.path(base.path,paste(model.name,'Scores','n_estimators.csv',sep="-")), stringsAsFactors=FALSE )
# max_depth
max.depth <- fread( file.path(base.path,paste(model.name,'Scores','max_depth.csv',sep="-")) )
# max_features
max.features <- fread( file.path(base.path,paste(model.name,'Scores','max_features_and_bootstrap.csv',sep="-")) )
max.features$max_features <- unlist(lapply(as.numeric(max.features$max_features), round, 2))
max.features <- max.features[ bootstrap != TRUE ] # Drop where bootstrap is true
max.features <- max.features[ max_features != is.na(max_features) ] # Drop where 'auto' or 'sqrt'
# min_samples_leaf
min.leaf <- fread( file.path(base.path,paste(model.name,'Scores','min_samples_leaf.csv',sep="-")) )
# Assemble into a single data table
n.estimators$label = 'n Estimators'
max.depth$label = 'Maximum Depth'
max.features$label = 'Maximum Features'
min.leaf$label = 'Minimum Leaf Size'
# Set up ribbons for training
n.estimators$uctr = n.estimators$`Training Score` + n.estimators$`Std. of Training Scores`
n.estimators$lctr = n.estimators$`Training Score` - n.estimators$`Std. of Training Scores`
max.depth$uctr = max.depth$`Training Score`+ max.depth$`Std. of Training Scores`
max.depth$lctr = max.depth$`Training Score`- max.depth$`Std. of Training Scores`
max.features$uctr = max.features$`Training Score`+ max.features$`Std. of Training Scores`
max.features$lctr = max.features$`Training Score`- max.features$`Std. of Training Scores`
min.leaf$uctr = min.leaf$`Training Score`+ min.leaf$`Std. of Training Scores`
min.leaf$lctr = min.leaf$`Training Score`- min.leaf$`Std. of Training Scores`
# Set up ribbons for testing
n.estimators$uctst = n.estimators$`Test Score` + n.estimators$`Std. of Test Scores`
n.estimators$lctst = n.estimators$`Test Score` - n.estimators$`Std. of Test Scores`
max.depth$uctst = max.depth$`Test Score`+ max.depth$`Std. of Test Scores`
max.depth$lctst = max.depth$`Test Score`- max.depth$`Std. of Test Scores`
max.features$uctst = max.features$`Test Score`+ max.features$`Std. of Test Scores`
max.features$lctst = max.features$`Test Score`- max.features$`Std. of Test Scores`
min.leaf$uctst = min.leaf$`Test Score`+ min.leaf$`Std. of Test Scores`
min.leaf$lctst = min.leaf$`Test Score`- min.leaf$`Std. of Test Scores`
# Training Results -- ylim probably needs to be about 0 -0.3 (but possibly -0.1 and even then that might flatline the results for some params)
p1 <- ggplot(n.estimators) +
geom_line( aes(x=n_estimators, y=`Training Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctr, ymax=uctr, x=n_estimators, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Number of Trees') +
theme_bw() +
theme(legend.position="none")
p2 <- ggplot(max.depth) +
geom_line( aes(x=max_depth, y=`Training Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctr, ymax=uctr, x=max_depth, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Maximum Tree Depth') +
theme_bw() +
theme(legend.position="none")
p3 <- ggplot(max.features) +
geom_line( aes(x=max_features, y=`Training Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctr, ymax=uctr, x=max_features, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Maximum Features Considered') +
theme_bw() +
theme(legend.position="none")
p4 <- ggplot(min.leaf) +
geom_line( aes(x=min_samples_leaf, y=`Training Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctr, ymax=uctr, x=min_samples_leaf, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Minimum Samples per Leaf') +
theme_bw() +
theme(legend.position="none")
m1 <- grid.arrange(p1,p3,p2,p4, ncol=2, nrow=2, top=textGrob("Hyperparameter Training", gp=gpar(fontsize=15,font=8)))
ggsave(plot=m1, filename="Hyperparameters - Training.pdf", path=file.path(base.path), device='pdf', width=8, height=8, units='in')
# Testing Results -- ylim probably needs to be about 0 (or -0.25) to -0.325
p5 <- ggplot(n.estimators) +
geom_line( aes(x=n_estimators, y=`Test Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctst, ymax=uctst, x=n_estimators, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Number of Trees') +
theme_bw() +
theme(legend.position="none")
p6 <- ggplot(max.depth) +
geom_line( aes(x=max_depth, y=`Test Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctst, ymax=uctst, x=max_depth, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Maximum Tree Depth') +
theme_bw() +
theme(legend.position="none")
p7 <- ggplot(max.features) +
geom_line( aes(x=max_features, y=`Test Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctst, ymax=uctst, x=max_features, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Maximum Features Considered') +
theme_bw() +
theme(legend.position="none")
p8 <- ggplot(min.leaf) +
geom_line( aes(x=min_samples_leaf, y=`Test Score`, colour='red') ) +
geom_ribbon(aes(ymin=lctst, ymax=uctst, x=min_samples_leaf, fill="band"), alpha = 0.3) +
scale_y_continuous(labels=comma) +
xlab('Minimum Samples per Leaf') +
theme_bw() +
theme(legend.position="none")
m2 <- grid.arrange(p5,p6,p7,p8, ncol=2, nrow=2, top=textGrob("Hyperparameter Testing", gp=gpar(fontsize=15,font=8)))
ggsave(plot=m2, filename="Hyperparameters - Testing.pdf", path=file.path(base.path), device='pdf', width=8, height=8, units='in')
#### Performance of Predictions
lsoas <- st_read(file.path('.','data','shp','LSOAs 2011.shp'), quiet=TRUE)
lsoas <- lsoas %>% st_set_crs(NA) %>% st_set_crs(target.crs)
cat("Loaded LSOAs file containing",nrow(lsoas),"zones","\n")
dt = fread( paste("gunzip","-c",file.path(base.path,paste(model.name,'Predictions.csv.gz',sep='-'))) )
setkey(dt,'lsoacd')
cat("Loaded predictions file containing",nrow(dt),"rows","\n")
print( cor(x=dt$`SES 2011`, y=dt$`SES 2011 (Predicted)`, use="complete.obs") )
# Work out SD of percentile change
dt$`Z-Score of Percentile Change 2001-2011` = (dt$`SES Percentile Ascent 2001-2011` - mean(dt$`SES Percentile Ascent 2001-2011`))/sd(dt$`SES Percentile Ascent 2001-2011`)
dt$`Z-Score of Percentile Change 2011-2021` = (dt$`SES Percentile Change 2011-2021` - mean(dt$`SES Percentile Change 2011-2021`))/sd(dt$`SES Percentile Change 2011-2021`)
dt[dt$lsoacd=='E01001335',]
dt$z0111 = cut(dt$`Z-Score of Percentile Change 2001-2011`, breaks = c(floor(min(dt$`Z-Score of Percentile Change 2001-2011`)), -4, -2, -1, 0, 1, 2, 4, ceiling(max(dt$`Z-Score of Percentile Change 2001-2011`))), labels=FALSE)
dt$z1121 = cut(dt$`Z-Score of Percentile Change 2011-2021`, breaks = c(floor(min(dt$`Z-Score of Percentile Change 2011-2021`)), -4, -2, -1, 0, 1, 2, 4, ceiling(max(dt$`Z-Score of Percentile Change 2011-2021`))), labels=FALSE)
dt$z0111 = dt$z0111-4.5
dt$z1121 = dt$z1121-4.5
dt[dt$lsoacd=='E01001335',]
write.csv(dt, file=file.path(base.path,paste(model.name,'Predictions-Standardised.csv',sep="-")))
dt.s <- merge(dt, lsoas, left_on='lsoacd', right_on='lsoacd')
ggplot(dt.s) +
geom_histogram(aes(z0111), stat="count", na.rm=TRUE)
ggplot(dt.s) +
#geom_sf(data=dt.s, aes(fill=z0111), lwd = 0)
geom_sf(data=dt.s, color="white", size=0.125, aes(fill=z1121))
ses.min = floor(min(dt.s[, c('SES 2001', 'SES 2011','SES 2021 (Predicted)'), with=FALSE]))
ses.max = ceiling(max(dt.s[, c('SES 2001', 'SES 2011','SES 2021 (Predicted)'), with=FALSE]))
p <- ggplot(data=dt.s) +
geom_density( aes(x=`SES 2021 (Predicted)`, fill=NULL), color='green' ) +
geom_density( aes(x=`SES 2011`, fill=NULL), color='red' ) +
geom_density( aes(x=`SES 2001`, fill=NULL), color='blue' ) +
xlab("Neighbourhood Score") +
ylab("Density") +
ggtitle("Evolution of Neighbourhood Scores Over Time") +
scale_color_hue(labels = c("2001", "2011", "2021")) +
theme_bw()
# guide_legend(title=NULL, title.position='top')
ggsave(plot=p, filename="Scores - Distributions.pdf", path=file.path(base.path), device='pdf', width=5, height=5, units='in')
rm(p)
p <- ggplot(data=dt.s, aes(x=`SES 2011`, y=`SES 2011 (Predicted)`)) +
geom_smooth(method=lm, size=0.5, alpha=0.4, color='red') +
geom_point(size=0.5, alpha=0.25) + # aes(color=dt.s$LAD11CD),
theme(legend.position="none") +
ggtitle("2011 Neighbourhood Scores: Predicted Against Actual") +
theme_bw()
ggsave(plot=p, filename="Predictions - 2011 Predicted Against Actual.pdf", path=file.path(base.path), device='pdf', width=5, height=5, units='in')
rm(p)
p <- ggplot(data=dt.s, aes(x=`SES 2001`, y=`SES 2011`)) +
geom_smooth(method=loess, size=0.5, alpha=1/2) +
geom_point(size=0.5, alpha=1/2) + # aes(color=dt.s$LAD11CD),
theme(legend.position="none") +
ggtitle("Neighbourhood Scores: 2001 against 2011") +
xlim( c(ses.min, ses.max) ) +
ylim( c(ses.min, ses.max) ) +
theme_bw()
ggsave(plot=p, filename="Predictions - 2001 to 2011.pdf", path=file.path(base.path), device='pdf', width=5, height=5, units='in')
rm(p)
p <- ggplot(data=dt.s, aes(x=`SES 2011`, y=`SES 2021 (Predicted)`)) +
geom_smooth(method=loess, size=0.5, alpha=1/2) +
geom_point(size=0.5, alpha=1/2) + # aes(color=dt.s$LAD11CD),
theme(legend.position="none") +
ggtitle("Neighbourhood Scores: 2011 against 2021") +
xlim( c(ses.min, ses.max) ) +
ylim( c(ses.min, ses.max) ) +
theme_bw()
ggsave(plot=p, filename="Predictions - 2011 to 2021.pdf", path=file.path(base.path), device='pdf', width=5, height=5, units='in')
rm(p)
asc.min = floor(min(dt.s[, c('SES Ascent 2001-2011','SES Ascent 2011-2021 (Predicted)'), with=FALSE]))
asc.max = ceiling(max(dt.s[, c('SES Ascent 2001-2011','SES Ascent 2011-2021 (Predicted)'), with=FALSE]))
p <- ggplot(data=dt.s, aes(x=`SES Ascent 2001-2011`, y=`SES Ascent 2011-2021 (Predicted)`)) +
geom_smooth(method=loess, size=0.5, alpha=1/2) +
geom_point(size=0.5, alpha=1/2) + # aes(color=dt.s$LAD11CD),
theme(legend.position="none") +
ggtitle("Neighbourhood Score Changes: 2001-2011 against 2011-2021") +
xlim( c(asc.min, asc.max) ) +
ylim( c(asc.min, asc.max) ) +
theme_bw()
ggsave(plot=p, filename="Predictions - Ascent Change.pdf", path=file.path(base.path), device='pdf', width=5, height=5, units='in')
rm(p)
#######################
# Variable Importance
fi <- fread( paste("gunzip","-c",file.path(base.path,"Untransformed-Feature_Importance.csv.gz")) )
p <- ggplot(fi, aes(y=importance, x=Category, group=Category)) + geom_point() +
ylab('Variable Importance') + xlab('Variable Group') +
ggtitle('Importance of Variable to Model') +
theme_bw() +
theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.4))
ggsave(plot=p, filename="Predictions - Variable Importance.pdf", path=file.path(base.path), device='pdf', width=5, height=5, units='in')
rm(p)
# Maps
ggplot(data=dt.s) +
geom_sf()