-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathbasics.ml
executable file
·465 lines (382 loc) · 17.6 KB
/
basics.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
(* ========================================================================= *)
(* More syntax constructors, and prelogical utilities like matching. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Andrea Gabrielli, Marco Maggesi 2017-2018 *)
(* ========================================================================= *)
needs "fusion.ml";;
(* ------------------------------------------------------------------------- *)
(* Create probably-fresh variable *)
(* ------------------------------------------------------------------------- *)
let genvar =
let gcounter = ref 0 in
fun ty -> let count = !gcounter in
(gcounter := count + 1;
mk_var("_"^(string_of_int count),ty));;
(* ------------------------------------------------------------------------- *)
(* Convenient functions for manipulating types. *)
(* ------------------------------------------------------------------------- *)
let dest_fun_ty ty =
match ty with
Tyapp("fun",[ty1;ty2]) -> (ty1,ty2)
| _ -> failwith "dest_fun_ty";;
let rec occurs_in ty bigty =
bigty = ty ||
is_type bigty && exists (occurs_in ty) (snd(dest_type bigty));;
let rec tysubst alist ty =
try rev_assoc ty alist with Failure _ ->
if is_vartype ty then ty else
let tycon,tyvars = dest_type ty in
mk_type(tycon,map (tysubst alist) tyvars);;
(* ------------------------------------------------------------------------- *)
(* A bit more syntax. *)
(* ------------------------------------------------------------------------- *)
let bndvar tm =
try fst(dest_abs tm)
with Failure _ -> failwith "bndvar: Not an abstraction";;
let body tm =
try snd(dest_abs tm)
with Failure _ -> failwith "body: Not an abstraction";;
let list_mk_comb(h,t) = rev_itlist (C (curry mk_comb)) t h;;
let list_mk_abs(vs,bod) = itlist (curry mk_abs) vs bod;;
let strip_comb = rev_splitlist dest_comb;;
let strip_abs = splitlist dest_abs;;
(* ------------------------------------------------------------------------- *)
(* Generic syntax to deal with some binary operators. *)
(* *)
(* Note that "mk_binary" only works for monomorphic functions. *)
(* ------------------------------------------------------------------------- *)
let is_binary s tm =
match tm with
Comb(Comb(Const(s',_),_),_) -> s' = s
| _ -> false;;
let dest_binary s tm =
match tm with
Comb(Comb(Const(s',_),l),r) when s' = s -> (l,r)
| _ -> failwith "dest_binary";;
let mk_binary s =
let c = mk_const(s,[]) in
fun (l,r) -> try mk_comb(mk_comb(c,l),r)
with Failure _ -> failwith "mk_binary";;
(* ------------------------------------------------------------------------- *)
(* Produces a sequence of variants, considering previous inventions. *)
(* ------------------------------------------------------------------------- *)
let rec variants av vs =
if vs = [] then [] else
let vh = variant av (hd vs) in vh::(variants (vh::av) (tl vs));;
(* ------------------------------------------------------------------------- *)
(* Gets all variables (free and/or bound) in a term. *)
(* ------------------------------------------------------------------------- *)
let variables =
let rec vars(acc,tm) =
if is_var tm then insert tm acc
else if is_const tm then acc
else if is_abs tm then
let v,bod = dest_abs tm in
vars(insert v acc,bod)
else
let l,r = dest_comb tm in
vars(vars(acc,l),r) in
fun tm -> vars([],tm);;
(* ------------------------------------------------------------------------- *)
(* General substitution (for any free expression). *)
(* ------------------------------------------------------------------------- *)
let subst =
let rec ssubst ilist tm =
if ilist = [] then tm else
try fst (find ((aconv tm) o snd) ilist) with Failure _ ->
match tm with
Comb(f,x) -> let f' = ssubst ilist f and x' = ssubst ilist x in
if f' == f && x' == x then tm else mk_comb(f',x')
| Abs(v,bod) ->
let ilist' = filter (not o (vfree_in v) o snd) ilist in
mk_abs(v,ssubst ilist' bod)
| _ -> tm in
fun ilist ->
let theta = filter (fun (s,t) -> compare s t <> 0) ilist in
if theta = [] then (fun tm -> tm) else
let ts,xs = unzip theta in
fun tm ->
let gs = variants (variables tm) (map (genvar o type_of) xs) in
let tm' = ssubst (zip gs xs) tm in
if tm' == tm then tm else vsubst (zip ts gs) tm';;
(* ------------------------------------------------------------------------- *)
(* Alpha conversion term operation. *)
(* ------------------------------------------------------------------------- *)
let alpha v tm =
let v0,bod = try dest_abs tm
with Failure _ -> failwith "alpha: Not an abstraction"in
if v = v0 then tm else
if type_of v = type_of v0 && not (vfree_in v bod) then
mk_abs(v,vsubst[v,v0]bod)
else failwith "alpha: Invalid new variable";;
(* ------------------------------------------------------------------------- *)
(* Type matching. *)
(* ------------------------------------------------------------------------- *)
let rec type_match vty cty sofar =
if is_vartype vty then
try if rev_assoc vty sofar = cty then sofar else failwith "type_match"
with Failure "find" -> (cty,vty)::sofar
else
let vop,vargs = dest_type vty and cop,cargs = dest_type cty in
if vop = cop then itlist2 type_match vargs cargs sofar
else failwith "type_match";;
(* ------------------------------------------------------------------------- *)
(* Conventional matching version of mk_const (but with a sanity test). *)
(* ------------------------------------------------------------------------- *)
let mk_mconst(c,ty) =
try let uty = get_const_type c in
let mat = type_match uty ty [] in
let con = mk_const(c,mat) in
if type_of con = ty then con else fail()
with Failure _ -> failwith "mk_const: generic type cannot be instantiated";;
(* ------------------------------------------------------------------------- *)
(* Like mk_comb, but instantiates type variables in rator if necessary. *)
(* ------------------------------------------------------------------------- *)
let mk_icomb(tm1,tm2) =
let "fun",[ty;_] = dest_type (type_of tm1) in
let tyins = type_match ty (type_of tm2) [] in
mk_comb(inst tyins tm1,tm2);;
(* ------------------------------------------------------------------------- *)
(* Instantiates types for constant c and iteratively makes combination. *)
(* ------------------------------------------------------------------------- *)
let list_mk_icomb cname args =
let atys,_ = nsplit dest_fun_ty args (get_const_type cname) in
let tyin = itlist2 (fun g a -> type_match g (type_of a)) atys args [] in
list_mk_comb(mk_const(cname,tyin),args);;
(* ------------------------------------------------------------------------- *)
(* Free variables in assumption list and conclusion of a theorem. *)
(* ------------------------------------------------------------------------- *)
let thm_frees th =
let asl,c = dest_thm th in
itlist (union o frees) asl (frees c);;
(* ------------------------------------------------------------------------- *)
(* Is one term free in another? *)
(* ------------------------------------------------------------------------- *)
let rec free_in tm1 tm2 =
if aconv tm1 tm2 then true
else if is_comb tm2 then
let l,r = dest_comb tm2 in free_in tm1 l || free_in tm1 r
else if is_abs tm2 then
let bv,bod = dest_abs tm2 in
not (vfree_in bv tm1) && free_in tm1 bod
else false;;
(* ------------------------------------------------------------------------- *)
(* Searching for terms. *)
(* ------------------------------------------------------------------------- *)
let rec find_term p tm =
if p tm then tm else
if is_abs tm then find_term p (body tm) else
if is_comb tm then
let l,r = dest_comb tm in
try find_term p l with Failure _ -> find_term p r
else failwith "find_term";;
let find_terms =
let rec accum tl p tm =
let tl' = if p tm then insert tm tl else tl in
if is_abs tm then
accum tl' p (body tm)
else if is_comb tm then
accum (accum tl' p (rator tm)) p (rand tm)
else tl' in
accum [];;
(* ------------------------------------------------------------------------- *)
(* General syntax for binders. *)
(* *)
(* NB! The "mk_binder" function expects polytype "A", which is the domain. *)
(* ------------------------------------------------------------------------- *)
let is_binder s tm =
match tm with
Comb(Const(s',_),Abs(_,_)) -> s' = s
| _ -> false;;
let dest_binder s tm =
match tm with
Comb(Const(s',_),Abs(x,t)) when s' = s -> (x,t)
| _ -> failwith "dest_binder";;
let mk_binder op =
let c = mk_const(op,[]) in
fun (v,tm) -> mk_comb(inst [type_of v,aty] c,mk_abs(v,tm));;
(* ------------------------------------------------------------------------- *)
(* Syntax for binary operators. *)
(* ------------------------------------------------------------------------- *)
let is_binop op tm =
match tm with
Comb(Comb(op',_),_) -> op' = op
| _ -> false;;
let dest_binop op tm =
match tm with
Comb(Comb(op',l),r) when op' = op -> (l,r)
| _ -> failwith "dest_binop";;
let mk_binop op tm1 =
let f = mk_comb(op,tm1) in
fun tm2 -> mk_comb(f,tm2);;
let list_mk_binop op = end_itlist (mk_binop op);;
let binops op = striplist (dest_binop op);;
(* ------------------------------------------------------------------------- *)
(* Some common special cases *)
(* ------------------------------------------------------------------------- *)
let is_conj = is_binary "/\\";;
let dest_conj = dest_binary "/\\";;
let conjuncts = striplist dest_conj;;
let is_imp = is_binary "==>";;
let dest_imp = dest_binary "==>";;
let is_forall = is_binder "!";;
let dest_forall = dest_binder "!";;
let strip_forall = splitlist dest_forall;;
let is_exists = is_binder "?";;
let dest_exists = dest_binder "?";;
let strip_exists = splitlist dest_exists;;
let is_disj = is_binary "\\/";;
let dest_disj = dest_binary "\\/";;
let disjuncts = striplist dest_disj;;
let is_neg tm =
try fst(dest_const(rator tm)) = "~"
with Failure _ -> false;;
let dest_neg tm =
try let n,p = dest_comb tm in
if fst(dest_const n) = "~" then p else fail()
with Failure _ -> failwith "dest_neg";;
let is_uexists = is_binder "?!";;
let dest_uexists = dest_binder "?!";;
let dest_cons = dest_binary "CONS";;
let is_cons = is_binary "CONS";;
let dest_list tm =
try let tms,nil = splitlist dest_cons tm in
if fst(dest_const nil) = "NIL" then tms else fail()
with Failure _ -> failwith "dest_list";;
let is_list = can dest_list;;
(* ------------------------------------------------------------------------- *)
(* Syntax for numerals. *)
(* ------------------------------------------------------------------------- *)
let dest_numeral =
let rec dest_num tm =
if try fst(dest_const tm) = "_0" with Failure _ -> false then num_0 else
let l,r = dest_comb tm in
let n = num_2 */ dest_num r in
let cn = fst(dest_const l) in
if cn = "BIT0" then n
else if cn = "BIT1" then n +/ num_1
else fail() in
fun tm -> try let l,r = dest_comb tm in
if fst(dest_const l) = "NUMERAL" then dest_num r else fail()
with Failure _ -> failwith "dest_numeral";;
(* ------------------------------------------------------------------------- *)
(* Syntax for generalized abstractions. *)
(* *)
(* These are here because they are used by the preterm->term translator; *)
(* preterms regard generalized abstractions as an atomic notion. This is *)
(* slightly unclean --- for example we need locally some operations on *)
(* universal quantifiers --- but probably simplest. It has to go somewhere! *)
(* ------------------------------------------------------------------------- *)
let dest_gabs =
let dest_geq = dest_binary "GEQ" in
fun tm ->
try if is_abs tm then dest_abs tm else
let l,r = dest_comb tm in
if not (fst(dest_const l) = "GABS") then fail() else
let ltm,rtm = dest_geq(snd(strip_forall(body r))) in
rand ltm,rtm
with Failure _ -> failwith "dest_gabs: Not a generalized abstraction";;
let is_gabs = can dest_gabs;;
let mk_gabs =
let mk_forall(v,t) =
let cop = mk_const("!",[type_of v,aty]) in
mk_comb(cop,mk_abs(v,t)) in
let list_mk_forall(vars,bod) = itlist (curry mk_forall) vars bod in
let mk_geq(t1,t2) =
let p = mk_const("GEQ",[type_of t1,aty]) in
mk_comb(mk_comb(p,t1),t2) in
fun (tm1,tm2) ->
if is_var tm1 then mk_abs(tm1,tm2) else
let fvs = frees tm1 in
let fty = mk_fun_ty (type_of tm1) (type_of tm2) in
let f = variant (frees tm1 @ frees tm2) (mk_var("f",fty)) in
let bod = mk_abs(f,list_mk_forall(fvs,mk_geq(mk_comb(f,tm1),tm2))) in
mk_comb(mk_const("GABS",[fty,aty]),bod);;
let list_mk_gabs(vs,bod) = itlist (curry mk_gabs) vs bod;;
let strip_gabs = splitlist dest_gabs;;
(* ------------------------------------------------------------------------- *)
(* Syntax for let terms. *)
(* ------------------------------------------------------------------------- *)
let dest_let tm =
try let l,aargs = strip_comb tm in
if fst(dest_const l) <> "LET" then fail() else
let vars,lebod = strip_gabs (hd aargs) in
let eqs = zip vars (tl aargs) in
let le,bod = dest_comb lebod in
if fst(dest_const le) = "LET_END" then eqs,bod else fail()
with Failure _ -> failwith "dest_let: not a let-term";;
let is_let = can dest_let;;
let mk_let(assigs,bod) =
let lefts,rights = unzip assigs in
let lend = mk_comb(mk_const("LET_END",[type_of bod,aty]),bod) in
let lbod = list_mk_gabs(lefts,lend) in
let ty1,ty2 = dest_fun_ty(type_of lbod) in
let ltm = mk_const("LET",[ty1,aty; ty2,bty]) in
list_mk_comb(ltm,lbod::rights);;
(* ------------------------------------------------------------------------- *)
(* Constructors and destructors for finite types. *)
(* ------------------------------------------------------------------------- *)
let mk_finty:num->hol_type =
let rec finty n =
if n =/ num_1 then mk_type("1",[]) else
mk_type((if Num.mod_num n num_2 =/ num_0 then "tybit0" else "tybit1"),
[finty(Num.quo_num n num_2)]) in
fun n ->
if not(is_integer_num n) || n </ num_1 then failwith "mk_finty" else
finty n;;
let rec dest_finty:hol_type->num =
function
Tyapp("1",_) -> num_1
| Tyapp("tybit0",[ty]) -> dest_finty ty */ num_2
| Tyapp("tybit1",[ty]) -> succ_num (dest_finty ty */ num_2)
| _ -> failwith "dest_finty";;
(* ------------------------------------------------------------------------- *)
(* Useful function to create stylized arguments using numbers. *)
(* ------------------------------------------------------------------------- *)
let make_args =
let rec margs n s avoid tys =
if tys = [] then [] else
let v = variant avoid (mk_var(s^(string_of_int n),hd tys)) in
v::(margs (n + 1) s (v::avoid) (tl tys)) in
fun s avoid tys ->
if length tys = 1 then
[variant avoid (mk_var(s,hd tys))]
else
margs 0 s avoid tys;;
(* ------------------------------------------------------------------------- *)
(* Director strings down a term. *)
(* ------------------------------------------------------------------------- *)
let find_path =
let rec find_path p tm =
if p tm then [] else
if is_abs tm then "b"::(find_path p (body tm)) else
try "r"::(find_path p (rand tm))
with Failure _ -> "l"::(find_path p (rator tm)) in
fun p tm -> implode(find_path p tm);;
let follow_path =
let rec follow_path s tm =
match s with
[] -> tm
| "l"::t -> follow_path t (rator tm)
| "r"::t -> follow_path t (rand tm)
| _::t -> follow_path t (body tm) in
fun s tm -> follow_path (explode s) tm;;
(* ------------------------------------------------------------------------- *)
(* Considering a term as a propositional formula and returning atoms. *)
(* ------------------------------------------------------------------------- *)
let atoms =
let rec atoms acc tm =
match tm with
Comb(Comb(Const("/\\",_),l),r)
| Comb(Comb(Const("\\/",_),l),r)
| Comb(Comb(Const("==>",_),l),r)
| Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) ->
atoms (atoms acc l) r
| Comb(Const("~",_),l) -> atoms acc l
| _ -> (tm |-> ()) acc in
fun tm -> if type_of tm <> bool_ty then failwith "atoms: not Boolean"
else foldl (fun a x y -> x::a) [] (atoms undefined tm);;