-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_keras.py
161 lines (139 loc) · 6.92 KB
/
train_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import os
import numpy as np
from random import choice
from glob import glob
from keras.callbacks import ModelCheckpoint
from keras.layers import Dense, Dropout, LSTM, TimeDistributed, Bidirectional
from keras.models import Sequential, load_model
from text_utils import char2vec, n_chars
def chars_from_files(list_of_files):
while True:
filename = choice(list_of_files)
with open(filename, 'r') as f:
chars = f.read()
for c in chars:
yield c
def splice_texts(files_a, jump_size_a, files_b, jump_size_b):
a_chars = chars_from_files(files_a)
b_chars = chars_from_files(files_b)
generators = [a_chars, b_chars]
a_range = range(jump_size_a[0], jump_size_a[1])
b_range = range(jump_size_b[0], jump_size_b[1])
ranges = [a_range, b_range]
source_ind = choice([0, 1])
while True:
jump_size = choice(ranges[source_ind])
gen = generators[source_ind]
for _ in range(jump_size):
yield (gen.__next__(), source_ind)
source_ind = 1 - source_ind
def generate_batches(files_a, jump_size_a, files_b, jump_size_b, batch_size, sample_len, return_text=False):
gens = [splice_texts(files_a, jump_size_a, files_b, jump_size_b) for _ in range(batch_size)]
while True:
X = []
y = []
texts = []
for g in gens:
chars = []
vecs = []
labels = []
for _ in range(sample_len):
c, l = g.__next__()
vecs.append(char2vec[c])
labels.append([l])
chars.append(c)
X.append(vecs)
y.append(labels)
if return_text:
texts.append(''.join(chars))
if return_text:
yield (np.array(X), np.array(y), texts)
else:
yield (np.array(X), np.array(y))
def main(model_path, dir_a, dir_b, min_jump_size_a, max_jump_size_a, min_jump_size_b,
max_jump_size_b, seq_len, batch_size, rnn_size, lstm_layers, dropout_rate,
bidirectional, steps_per_epoch, validation_steps, epochs):
train_a = glob(os.path.join(dir_a, "train/*"))
train_b = glob(os.path.join(dir_b, "train/*"))
val_a = glob(os.path.join(dir_a, "test/*"))
val_b = glob(os.path.join(dir_b, "test/*"))
juma = [min_jump_size_a, max_jump_size_a]
jumb = [min_jump_size_b, max_jump_size_b]
batch_shape = (batch_size, seq_len, n_chars)
if os.path.isfile(model_path):
model = load_model(model_path)
batch_size, seq_len, _ = model.input_shape
else:
model = Sequential()
for _ in range(lstm_layers):
if bidirectional:
model.add(Bidirectional(LSTM(rnn_size, return_sequences=True),
batch_input_shape=batch_shape))
else:
model.add(LSTM(rnn_size, return_sequences=True, batch_input_shape=batch_shape,
stateful=True))
model.add(Dropout(dropout_rate))
model.add(TimeDistributed(Dense(units=1, activation='sigmoid')))
model.compile(optimizer='adam', loss='mse', metrics=['accuracy', 'binary_crossentropy'])
train_gen = generate_batches(train_a, juma, train_b, jumb, batch_size, seq_len)
validation_gen = generate_batches(val_a, juma, val_b, jumb, batch_size, seq_len)
checkpointer = ModelCheckpoint(model_path)
model.fit_generator(train_gen,
steps_per_epoch=steps_per_epoch,
validation_data=validation_gen,
validation_steps=validation_steps,
epochs=epochs,
callbacks=[checkpointer])
if __name__ == '__main__':
parser = argparse.ArgumentParser("train tagger and save trained model")
parser.add_argument("model_path", help=
"Path where to save trained model. If this path exists, a model will be loaded from it. "
"Otherwise a new one will be constructed. The model will be saved to this path after "
"every epoch.")
parser.add_argument("dir_a", help="directory with first source of input files. It should "
"contain 'train' and 'test' subdirectories that contain "
"actual files")
parser.add_argument("dir_b", help="directory with second source of input files. It should "
"contain 'train' and 'test' subdirectories that contain "
"actual files")
parser.add_argument("--min_jump_a", type=int, default=20, help="snippets from source A will "
"be at least this long")
parser.add_argument("--max_jump_a", type=int, default=200, help="snippets from source B will "
"be at most this long")
parser.add_argument("--min_jump_b", type=int, default=20, help="snippets from source B will "
"be at least this long")
parser.add_argument("--max_jump_b", type=int, default=200, help="snippets from source B will "
"be at most this long")
parser.add_argument("--sequence_length", type=int, default=100, help="how many characters in "
"single sequence")
parser.add_argument("--batch_size", type=int, default=1024)
parser.add_argument("--rnn_size", type=int, default=128, help="how many LSTM units per layr")
parser.add_argument("--lstm_layers", type=int, default=3, help="how many LSTM layers")
parser.add_argument("--dropout_rate", type=int, default=0.2, help="dropout rate for a "
"droupout layer inserted "
"after every LSTM layer")
parser.add_argument("--bidirectional", action="store_true",
help="Whether to use bidirectional LSTM. If true, inserts a backwards LSTM"
" layer after every normal layer.")
parser.add_argument("--steps_per_epoch", type=int, default=500)
parser.add_argument("--validation_steps", type=int, default=100)
parser.add_argument("--epochs", type=int, default=3)
args = parser.parse_args()
main(
args.model_path,
args.dir_a,
args.dir_b,
args.min_jump_a,
args.max_jump_a,
args.min_jump_b,
args.max_jump_b,
args.sequence_length,
args.batch_size,
args.rnn_size,
args.lstm_layers,
args.dropout_rate,
args.bidirectional,
args.steps_per_epoch,
args.validation_steps,
args.epochs)