-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanuscript_figure.qmd
138 lines (125 loc) · 4.33 KB
/
manuscript_figure.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
title: "Figure for tidyCoverage manuscript"
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
crop = NULL,
width = 180,
error = TRUE
)
library(tidyCoverage)
library(AnnotationHub)
library(purrr)
library(plyranges)
library(rtracklayer)
library(ggplot2)
```
# Plotting aggregate signals (ENCODE data) over REs
_Note: this is a Quarto vignette (`.qmd`)_
```{r, eval = FALSE}
library(tidyCoverage)
library(AnnotationHub)
library(purrr)
library(plyranges)
library(rtracklayer)
library(ggplot2)
# ~~~~~~~~~~ Tracks ~~~~~~~~~~ #
ids <- c(
fwdGRO = "ENCFF896TNM",
revGRO = "ENCFF764SVR",
Pol2RA = "ENCFF890SYC",
CTCF = "ENCFF484SOD",
DNAse = "ENCFF428XFI",
ATAC = "ENCFF165WGA",
H3K4me1 = "ENCFF785YET",
H3K4me3 = "ENCFF736DCK",
H3K9me3 = "ENCFF698SKV",
H3K27me3 = "ENCFF119CAV",
H3K27ac = "ENCFF458CRP"
)
future::plan(future::multisession(workers = 13))
options(timeout=10000)
furrr::future_map(ids[7:13], ~ {
download.file(glue::glue("https://www.encodeproject.org/files/{.x}/@@download/{.x}.bigWig"), glue::glue("encode/{.x}.bigWig"))
})
tracks <- rtracklayer::BigWigFileList(paste0('encode/', ids, '.bigWig'))
names(tracks) <- names(ids)
# ~~~~~~~~~~ REs ~~~~~~~~~~ #
download.file('https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2493-4/MediaObjects/41586_2020_2493_MOESM12_ESM.txt', 'data/REs_GRCh38.txt')
features <- vroom::vroom('data/REs_GRCh38.txt', col_names = TRUE, show_col_types = FALSE) |>
filter(chr == 'chr1') |>
filter(group %in% c('PLS,CTCF-bound', 'pELS,CTCF-bound', 'pELS', 'dELS,CTCF-bound', 'dELS')) |>
group_by(group) |>
dplyr::slice_head(n = 10000) |>
makeGRangesFromDataFrame(keep.extra.columns = TRUE)
genome(features) <- 'hg38'
REs <- split(features, features$group)
# ~~~~~~~~~~ Computing coverage of all tracks over all features ~~~~~~~~~~ #
library(BiocParallel)
register(MulticoreParam(workers = 13, progressbar = TRUE))
CE <- CoverageExperiment(
tracks = tracks,
features = REs,
width = 5000,
window = 5
)
AC <- aggregate(CE)
# ~~~~~~~~~~ Plot the resulting AggregatedCoverage object ~~~~~~~~~~ #
AC |>
as_tibble() |>
group_by(track, features) |>
mutate(group = dplyr::case_when(
stringr::str_detect(track, 'RNA|GRO') ~ "RNA",
stringr::str_detect(track, 'CTCF|DNAse|ATAC') ~ "Accessibility",
stringr::str_detect(track, 'H3') ~ "Histone PTMs"
)) |>
# mutate(across(all_of(c("mean", "ci_low", "ci_high")), ~ ifelse(group == 'RNA', scale(.x), .x))) |>
mutate(group = factor(group, c("RNA", "Accessibility", "Histone PTMs"))) |>
mutate(track = factor(track, names(ids))) |>
tidyr::drop_na() |>
ggplot(aes(x = coord, y = mean)) +
geom_ribbon(aes(ymin = ci_low, ymax = ci_high, fill = track), alpha = 0.2) +
geom_line(aes(col = track)) +
facet_grid(group~features, scales = 'free') +
labs(x = 'Distance from center of reg. elements', y = 'Track signal') +
theme_bw() +
theme(legend.position = 'top') +
hues::scale_colour_iwanthue() +
hues::scale_fill_iwanthue()
```
# Plotting matrix signals (ENCODE data) over REs
```{r, eval = FALSE}
expand(CE) |>
filter(track == "ATAC") |>
select(-coord) |>
nest(data = c(coord.scaled, coverage)) |>
mutate(score = map_dbl(
data,
~ filter(.x, abs(coord.scaled) < 50) |> pull(coverage) |> mean(na.rm = TRUE)
)) |>
unnest(data) |>
arrange(score) |>
mutate(coverage = scales::oob_squish(coverage, c(0, 10))) |>
ggplot(aes(x = coord.scaled, y = factor(ranges, unique(ranges)), fill = coverage)) +
geom_tile() |> ggrastr::rasterize() +
facet_wrap(~ features, scales = 'free') +
scale_fill_distiller(palette = 'Spectral', direction = -1) +
scale_x_continuous(expand = c(0,0)) +
theme_bw() +
theme(
legend.position = 'bottom',
axis.text.y = element_blank(),
axis.ticks.y = element_blank()
)
as_tibble(AC) |> filter(track == "ATAC", features == 'PLS,CTCF-bound') |>
pivot_longer(all_of(c("mean", "median", "ci_low", "ci_high")), names_to = 'coverage', values_to = 'score') |>
ggplot(aes(x = coord, y = score, col = coverage)) +
geom_path() +
facet_grid(~ coverage)
```
# Session info
```{r}
sessioninfo::session_info()
```