forked from pgvector/pgvector-php
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.php
43 lines (33 loc) · 1.62 KB
/
example.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
<?php
require_once __DIR__ . '/vendor/autoload.php';
use Pgvector\Vector;
$db = pg_connect('postgres://localhost/pgvector_example');
pg_query($db, 'CREATE EXTENSION IF NOT EXISTS vector');
pg_query($db, 'DROP TABLE IF EXISTS users');
pg_query($db, 'DROP TABLE IF EXISTS movies');
pg_query($db, 'CREATE TABLE users (id integer PRIMARY KEY, factors vector(20))');
pg_query($db, 'CREATE TABLE movies (name text PRIMARY KEY, factors vector(20))');
$data = Disco\Data::loadMovieLens();
$recommender = new Disco\Recommender(factors: 20);
$recommender->fit($data);
foreach ($recommender->userIds() as $userId) {
pg_query_params($db, 'INSERT INTO users (id, factors) VALUES ($1, $2)', [$userId, new Vector($recommender->userFactors($userId))]);
}
foreach ($recommender->itemIds() as $itemId) {
$name = mb_convert_encoding($itemId, 'UTF-8', 'ISO-8859-1'); // fix encoding
pg_query_params($db, 'INSERT INTO movies (name, factors) VALUES ($1, $2)', [$name, new Vector($recommender->itemFactors($itemId))]);
}
$movie = 'Star Wars (1977)';
echo "Item-based recommendations for $movie\n";
$result = pg_query_params($db, 'SELECT name FROM movies WHERE name != $1 ORDER BY factors <=> (SELECT factors FROM movies WHERE name = $1) LIMIT 5', [$movie]);
while ($row = pg_fetch_array($result)) {
echo $row['name'] . "\n";
}
$userId = 123;
echo "\nUser-based recommendations for user $userId\n";
$result = pg_query_params($db, 'SELECT name FROM movies ORDER BY factors <#> (SELECT factors FROM users WHERE id = $1) LIMIT 5', [$userId]);
while ($row = pg_fetch_array($result)) {
echo $row['name'] . "\n";
}
pg_free_result($result);
pg_close($db);