-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseer.py
123 lines (113 loc) · 6.58 KB
/
seer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import pandas as pd
from sentence_transformers import util
from utils import *
from tqdm import tqdm
from pulp import LpMaximize, LpProblem, LpVariable, lpSum, LpBinary, GUROBI_CMD
def compute_similarity_matrix(train_questions,
test_questions,
embedding_model='all-MiniLM-L6-v2',
progress_bar=False,
save=True,
output_path='output/similarity_matrix.txt'):
'''
Generate a similarity matrix between train and test instances based on the cosine similarity of their sentence embeddings
Params:
train_questions (list) : list of train set questions.
test_questions (list) : list of test set questions.
embedding_model (str) : the name of the chosen SBERT embedding model.
progress_bar (bool) : if True, prints a progress bar while the embeddings are loading.
save (bool) : if True, saves the similarity matrix at the provided output_path.
output_path (str) : path to destination for saved file.
'''
train_questions = train_questions.to_list() if type(train_questions) != list else train_questions
test_questions = test_questions.to_list() if type(test_questions) != list else test_questions
train_embeddings = get_sentence_embeddings(train_questions,embedding_model,progress_bar)
test_embeddings = get_sentence_embeddings(train_questions,embedding_model,progress_bar)
similarities = pd.DataFrame()
#Compute cosinus similarity between the embeddings
for t in tqdm(range(len(test_embeddings))):
similarities[t] = [round(util.cos_sim(train_embeddings[i],test_embeddings[t]).item(),5) for i in range(len(train_questions))]
if save:
np.savetxt(output_path,similarities.values)
return similarities
class SEER:
'''
The SEER algorithm.
Attributes:
k (int) : the number of nearest neighbor to filter
M (int) : the maximum number of exemplars to select
alpha (float) : the share of exemplars that should possess the attribute of the test instance
beta (float) : the share of exemplars that should not possess the attribute of the test instance
modules (list) : list of constraint modules to include
'''
def __init__(self,
k=200,
M=4,
alpha=0.5,
beta=0.25,
modules=['modality','answer_type']):
self.k = k
self.M = M
self.alpha = alpha
self.beta = beta
self.modules = modules
def get_KNN(self,test_idx,similarity_matrix,train_filter=[]):
'''
Retrieves the nearest neighbor of a test instance given a similarity matrix.
'''
instance_similarity = similarity_matrix[test_idx]
candidates = [idx for idx in np.argsort(instance_similarity) if idx in train_filter][-self.k:][::-1] #First is the best one
return candidates
def get_knapsack(self,
test_idx,
candidates_idx,
train_dataframe,
test_dataframe,
similarity_matrix,
max_prompt_length,
name='seer knapsack problem'):
problem = LpProblem(name,LpMaximize)
candidates = LpVariable.dicts("instance",candidates_idx,0,cat=LpBinary)
#Add objective
problem += lpSum([similarity_matrix[test_idx][i]*candidates[i] for i in candidates_idx])
#Add capacity constraints
problem += lpSum([train_dataframe.loc[i,'token_prompt_length']*candidates[i] for i in candidates_idx]) <= max_prompt_length
problem += lpSum([candidates[i] for i in candidates_idx]) <= self.M
#Add diversity constraints
if 'modality' in self.modules:
modality= test_dataframe.loc[test_idx,'predicted_modality']
if modality==0:
problem += lpSum([train_dataframe.loc[i,'table_only']*candidates[i]for i in candidates_idx]) >= self.M * self.alpha
problem += lpSum([train_dataframe.loc[i,'use_text']*candidates[i]for i in candidates_idx]) >=self.M * self.beta
elif modality==1:
problem += lpSum([train_dataframe.loc[i,'use_table']*candidates[i]for i in candidates_idx]) >= self.M * self.beta
problem += lpSum([train_dataframe.loc[i,'text_only']*candidates[i]for i in candidates_idx]) >= self.M * self.alpha
else:
problem += lpSum([train_dataframe.loc[i,'table_only']*candidates[i]for i in candidates_idx]) >= self.M * self.beta
problem += lpSum([train_dataframe.loc[i,'text_only']*candidates[i]for i in candidates_idx]) >= self.M * self.beta
problem += lpSum([train_dataframe.loc[i,'hybrid']*candidates[i]for i in candidates_idx]) >= min(self.M * self.beta,train_dataframe.loc[candidates_idx,'hybrid'].sum())
if 'answer_type' in self.modules:
answer_type = test_dataframe.loc[test_idx,'predicted_answer_type']
problem += lpSum([train_dataframe.loc[i,answer_type]*candidates[i]for i in candidates_idx]) >= self.M * self.alpha
other_answer_type = ['span','multi-span','arithmetic','count']
other_answer_type.remove(answer_type)
problem += lpSum([train_dataframe.loc[i,other_answer_type[0]]*candidates[i] +
train_dataframe.loc[i,other_answer_type[1]]*candidates[i] +
train_dataframe.loc[i,other_answer_type[2]]*candidates[i] for i in candidates_idx]) >= self.M * self.beta
return problem
def solve_knapsack(self,problem,timelimit=5.0):
solver = GUROBI_CMD(timeLimit=timelimit)
problem.solve(solver)
try:
solution = dict(zip([int(v.name.split('_')[1]) for v in problem.variables() ],[v.varValue for v in problem.variables() ]))
except:
solution = dict(zip([int(v.name.split('_')[1]) for v in problem.variables()[1:]],[v.varValue for v in problem.variables()[1:]]))
return solution
def get_few_shot_exemplars(self,test_idx,similarity_matrix,train_dataframe,test_dataframe,train_filter,L):
candidates = self.get_KNN(test_idx,similarity_matrix,train_filter)
problem = self.get_knapsack(test_idx,candidates,train_dataframe,test_dataframe,similarity_matrix,L)
solution = self.solve_knapsack(problem)
selection = [k for k,v in solution.items() if v==1]
few_shot_selection = [idx for idx in np.argsort(similarity_matrix[test_idx]) if idx in selection][::-1]
return few_shot_selection