-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtatqa_utils.py
144 lines (124 loc) · 3.75 KB
/
tatqa_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import re
import string
from typing import List
import numpy as np
def scale_to_num(scale):
scale = scale.lower()
num = 1
if 'hundred' in scale: # hundred
num = 100
elif 'thousand' in scale: # thousand
num = 1000
elif 'million' in scale: # million
num = 1000000
elif 'billion' in scale: # billion
num = 1000000000
elif 'percent' in scale: # percent
num = 0.01
return num
def extract_one_num_from_str(s):
s = _clean_num(s)
r_num = r"([+-]?\d+(\.\d+)?)|([+-]?\.\d+)"
groups = re.findall(r_num, s)
if len(groups) == 0:
return None
num = groups[0][0]
if num == '':
return None
if '.' in num:
return float(num)
return int(num)
EXCLUDE_IN_NUM = "'\"\\$€£¥%(),[]"
def _clean_num(text:str):
return "".join([ch for ch in str(text) if ch not in EXCLUDE_IN_NUM])
def is_number(text: str) -> bool:
try:
words = " ".join([_clean_num(w) for w in text.split()]).split()
if len(words) == 0:
"""1023 or 1 million"""
return False
num = float(words[0])
if np.isnan(num):
return False
if len(words) >= 2:
if scale_to_num(words[1]) == 1:
return False
return True
except ValueError:
return False
# except AttributeError:
# return False
def negative_num_handle(x):
"""
:param x: transform (134) -> -134 Conversion of negative numbers!!
:return:
"""
all = re.findall('(\([\d.\s]+\))', x.strip())
if len(all) > 0:
return -1
return 1
def percent_num_handle(x):
"""
:param x: transform 12% -> 12/100
:return:
"""
all = re.findall('([\d.\s]+%)', x.strip())
if len(all) > 0:
return 0.01
return 1
def word_scale_handle(x):
"""
:param x: 1 million = 1,000,000
:return:
"""
iter = re.finditer('([\d.]+\s?[a-zA-Z]+)', x)
for one in iter:
text = one.group(0).lower()
scale_val = scale_to_num(text)
return scale_val
return 1
def to_number(text:str) -> float:
num = extract_one_num_from_str(text)
scale_val = word_scale_handle(text)
negative_flag = negative_num_handle(text)
percent_flag = percent_num_handle(text)
if num is not None:
return round(num * scale_val * negative_flag * percent_flag, 4)
return None
def remove_articles(text: str) -> str:
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text: str) -> str:
return ' '.join(text.split())
EXCLUDE = set(string.punctuation)
def remove_punc(text: str) -> str:
if not is_number(text):
return ''.join(ch for ch in text if ch not in EXCLUDE)
else:
return text
def lower(text: str) -> str:
return text.lower()
def tokenize(text: str) -> List[str]:
return re.split(" ", text)
def normalize_number(text: str) -> str:
if is_number(text):
return str(to_number(text))
else:
return text
def normalize_answer(text: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
parts = [white_space_fix(remove_articles(normalize_number(remove_punc(lower(token)))))
for token in tokenize(text)]
parts = [part for part in parts if part.strip()]
normalized = ' '.join(parts).strip()
return normalized
STRIPPED_CHARACTERS = string.punctuation + ''.join([u"‘", u"’", u"´", u"`", "_"])
def ws_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip().lower()
if not text:
return []
text = white_space_fix(text)
tokens = text.split()
tokens = [token.strip(STRIPPED_CHARACTERS) for token in tokens]
return tokens