-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathgenerate_kmer_deltas.py
37 lines (30 loc) · 1.27 KB
/
generate_kmer_deltas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#! /usr/bin/env python
from collections import namedtuple
import sys
import csv
import os
import math
import argparse
from methylation_utils import *
from methylation_parsers import *
parser = argparse.ArgumentParser( description='Calculate the difference between methyltrain means and ONT models')
parser.add_argument('--summary', type=str, required=True)
parser.add_argument('--ont-fofn', type=str, required=True)
args, files = parser.parse_known_args()
ont_model_set = dict()
load_ont_models_from_fofn("ont.alphabet_cpg.R7.fofn", ont_model_set)
load_ont_models_from_fofn("ont.alphabet_cpg.R9.fofn", ont_model_set)
summary = TrainingSummary(args.summary)
kmer_pattern = ['a', 'b', 'c', 'd', 'e', 'f']
print "\t".join(["model", "kmer", "m_position", "m_pattern", "difference"])
for m in summary.models:
ont_model = summary.get_ont_model_name(m)
for k in summary.models[m]:
sk = summary.models[m][k]
mk = ont_model_set[ont_model].kmers[k]
if sk.was_trained == 1 and k.count("M") == 1:
m_pos = k.find("M")
tmp = kmer_pattern[m_pos]
kmer_pattern[m_pos] = 'M'
print "\t".join([display_model(m), k, str(m_pos), ''.join(kmer_pattern), str(sk.trained_level_mean - mk.level_mean)])
kmer_pattern[m_pos] = tmp