forked from SantanderMetGroup/notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2018_ECOMS-UDG_ClimateServices.Rmd
709 lines (537 loc) · 31 KB
/
2018_ECOMS-UDG_ClimateServices.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
---
title: 'The ECOMS User Data Gateway: Towards seasonal prediction data provision and
research reproducibility in the era of Climate Services'
author: Antonio Cofiño, Joaquín Bedia, Maialen Iturbide, Manuel Vega, Sixto Herrera,
Jesús Fernández, M. Dolores Frías, Rodrigo Manzanas & Jose Manuel Gutiérrez
date: "18/07/2017"
output:
pdf_document:
toc: yes
html_document:
highlight: pygments
number_sections: yes
theme: readable
toc: yes
toc_float: yes
documentclass: article
subtitle: Companion R examples of the paper published in Climate Services (2018, [DOI:10.1016/j.cliser.2017.07.001](https://doi.org/10.1016/j.cliser.2017.07.001))
abstract: In this document we present the code that reproduces the analyses presented
in the paper. It mostly builds on the R packages of the *climate4R* bundle, plus
some additional packages for forecast verification that have been conveniently bridged
for a seamless integration. For the sake of brevity and accesibility, we only use
the UDG public datasets, whose access is automatically granted to anyone registering
Thus, we illustrate the analyses using the CFSv2 seasonal hindcast (CFSv2, Saha
et al 2013), the NCEP/NCAR reanalysis1 (NCEP, Kalnay et al 1996) and the gridded
observations from the EOBSv14 dataset (EOBS, Klein Tank et al 2002). Furthermore,
post-processed datasets are available for direct loading to facilitate the reproducibility
of figures.<br><br>
in the UDG via the THREDDS administration Panel ([TAP](http://www.meteo.unican.es/udg-tap/home)).
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,
message = FALSE,
fig.align = "center",
tidy = FALSE,
fig.path = 'figure/graphics-',
cache.path = 'cache/graphics-',
cache = TRUE)
```
# R PACKAGE REQUIREMENTS
The following R packages (R Core Team 2017) are required to follow the examples. Note the last **Session Information Section** of this manual, where the specific package versions used to build these examples are indicated.
## Installing the adequate version
All the *climate4R* packages are currently under active development. Thus, to ensure the reproducibility of these examples, it is recommend to install the same versions of the packages that produced this document, even though in most cases more recent versions exist. The package versions used are indicated in the Session Information Section at the end of this document. The function `install_github` from package `devtools` (Wickham and Chang 2016) is recommended to install a particular package version from the GitHub repositories. For, instance, to install `transformeR` v0.0.14, it suffices with pointing to the specific version tag after the `@` symbol.
Thus, in order to install the proper versions of the packages of the *climate4R* bundle needed to run these examples:
```{r,eval=FALSE}
devtools::install_github(c("SantanderMetGroup/transformeR@v0.0.14",
"SantanderMetGroup/loadeR@v1.0.9",
"SantanderMetGroup/loadeR.ECOMS@v1.2.3")
```
## R packages for data loading
The R package `loadeR.ECOMS` will perform the data loading task, including authentication against the UDG server (see the [installation instructions](http://meteo.unican.es/ecoms-udg/RPackage/versions)). In addition, a quick overview of all datasets and variables available in the ECOMS-UDG is available in [this table](http://meteo.unican.es/ecoms-udg/dataserver/catalog)
The `loadeR.ECOMS` package extends the capabilities of the `loadeR` package for data access, and enables access to any remote dataset via OPeNDAP (more details in the [loadeR's wiki page](https://github.com/SantanderMetGroup/loadeR/wiki)), as well as creating and accesing datasets locally. An example of remote access to a public dataset outside the ECOMS-UDG is provided in Section 4.
```{r}
library(loadeR.ECOMS)
```
## R package for data post-processing and plotting
In addition, the R package `transformeR` (Bedia and Iturbide 2017) enables climate data transformation (plotting, aggregation, subsetting, PCA/EOF analysis ...). Further details on its capabilities and installation instructions are available in the [wiki page](https://github.com/SantanderMetGroup/transformeR/wiki). It is seamlessly integrated with the data structures provided by `loadeR.ECOMS`.
```{r}
library(transformeR)
```
## R packages for verification
Two packages for verification have been developed in the frame of ECOMS: `SpecsVerification` (Siegert 2017), in SPECS, and `easyVerification` (MeteoSwiss 2017), in EUPORIAS. Both packages are available on CRAN. The former is a dependency of the latter, so installing `easyVerification` will also install `SpecsVerification` if not already present:
```{r,eval=FALSE}
if (!require("easyVerification")) install.packages("easyVerification")
```
```{r,message=FALSE}
library(easyVerification)
```
## Additional packages
The package `RColorBrewer` is used to replicate the spectral color palette used in the paper in the correlation maps. Next, the palette `veri.colors` is defined, that will be used in the verification maps:
```{r,message=FALSE}
library(RColorBrewer)
cols <- brewer.pal(n = 11, name = "Spectral")
veri.colors <- colorRampPalette(rev(cols))
```
# ANALYSIS OF THE WINTER NAO INDEX
```{r,echo=FALSE}
load("data/CFS_24_lm1_psl_DJF_annual_1983_2010_LD.Rdata")
load("data/NCEP_psl_DJF_annual_1949_2010_LD.Rdata")
```
## Data Loading
****
**NOTE: the already post-processed datasets used in this section are available for direct download (skip this section and jump to Section 2.2 if directly loaded with the next lines)**
```{r,eval=FALSE}
## NCEP reanalysis SLP
url <- "http://meteo.unican.es/work/UDG/NCEP_psl_DJF_annual_1949_2010_LD.Rdata"
temp_file <- tempfile()
download.file(url, destfile = temp_file)
load(temp_file, .GlobalEnv, verbose = TRUE)
## CFSv2 SLP
url <- "http://meteo.unican.es/work/UDG/CFS_24_lm1_psl_DJF_annual_1983_2010_LD.Rdata"
temp_file <- tempfile()
download.file(url, destfile = temp_file)
load(temp_file, .GlobalEnv, verbose = TRUE)
```
****
Prior to data access, authentication is required to access the UDG. The authentication is performed in one step:
```{r,eval=FALSE}
loginUDG(username = "jDoe", password = "*****")
```
### NCEP Reanalysis1 data
The spatial domain to compute the PC-based NAO index is indicated in [NCAR's Climate Data Guide](https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based)
```{r}
lonLim = c(-90,40)
latLim = c(20,80)
var = "psl"
```
Note that `"psl"` is the standard name defined in the UDG vocabulary for sea-level pressure. The UDG vocabulary can be inspected by typing `UDG.vocabulary()`. The sea-level pressure data from the NCEP reanalysis (`dataset = "NCEP_reanalysis1"`) is loaded in order to reconstruct the observed winter NAO index (`season = c(12,1,2)`) for the entire reanalysis period (1950-2010) (`years = NULL`, the default, which retrieves all available years. This is equivalent to `years = 1950:2010` in this case). As the original data are 6-hourly, data are aggregated on-the-fly by `loadeR.ECOMS` by introducing the arguments `time = "DD"` (to conver the data from 6-h to daily), `aggr.d = "mean"` (to indicate the aggregation function) and `aggr.m = "mean"` (which indicates that daily data will be monthly averaged).
```{r,eval=FALSE}
ncep.psl <- loadECOMS(dataset = "NCEP_reanalysis1",
var = var,
lonLim = lonLim,
latLim = latLim,
season = c(12,1,2),
years = NULL,
time = "DD",
aggr.d = "mean",
aggr.m = "mean")
```
Next we represent the mean sea-level pressure winter climatology:
```{r,fig.align='center',message=FALSE}
plotClimatology(climatology(ncep.psl),
backdrop.theme = "coastline",
main = "NCEP mean DJF SLP (1950-2010)")
```
### CFSv2 seasonal hindcast data
The corresponding hindcast is loaded in a similar way, but taking into account that in this case, it is necessary to specify two additional parameters to unequivocally define the query: the members (for instance, the first 24 members: `members = 1:24`) and the initialization time (e.g., 1-month ahead predictions: `leadMonth = 1`). Here, we illustrate this step using the data from the CFSv2 hindcast (`dataset = "CFSv2_seasonal"`). Note that the only difference between this example call to `loadECOMS` and a request for the other two hindcasts compared in the paper, would lie just in the dataset argument: `dataset = "Glosea5_seasonal_24"` for the UKMO Glosea5 hindcast of 24 members, or `dataset = "System4_seasonal_51"` for the ECMWF System4 seasonal hindcast of 51 members. Thanks to the [data harmonization](http://meteo.unican.es/ecoms-udg/RPackage/homogeneization) performed by `loadeR.ECOMS`, the rest of parameters (variable naming...) remain exactly the same. Member selection is also transparent to users, who don't need to worry about the different member configurations. As an example, see the CFSv2 [lagged runtime member configuration](http://meteo.unican.es/ecoms-udg/dataserver/datasets/CFSv2) and the definition of members undertaken via `loadECOMS`.
```{r,eval=FALSE}
cfs.psl <- loadECOMS(dataset = "CFSv2_seasonal",
var = var,
lonLim = lonLim,
latLim = latLim,
season = c(12,1,2),
years = NULL,
time = "DD",
aggr.d = "mean",
aggr.m = "mean",
members = 1:24,
leadMonth = 1)
```
```{r,fig.align='center',fig.width=10,fig.height=9,message=FALSE}
plotClimatology(climatology(cfs.psl),
backdrop.theme = "coastline",
main = "Mean DJF SLP (1983-2010)")
```
## Temporal aggregation
The monthly data are next annually aggregated:
```{r,eval=FALSE}
ncep.psl <- aggregateGrid(grid = ncep.psl, aggr.y = list(FUN = "mean"))
cfs.psl <- aggregateGrid(grid = cfs.psl, aggr.y = list(FUN = "mean"))
```
## NAO INDEX
The PC-based NAO index is defined as the leading EOF of the sea-level pressure anomalies. The methodological details and reference time-series are presented in the [NCAR's Climate Data Guide](https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based).
### Observed NAO Index
After data loading, the NAO-Index can be calculated in two simple steps using the transformation tools available in `transformeR`:
1. The anomalies are computed using `rescaleGrid` with its default arguments:
```{r,message=FALSE}
psl.anom <- localScaling(grid = ncep.psl)
```
2. The EOFs (in this case only the first one) are computed using the `prinComp` function, and then plotted with `plotEOF`:
```{r,fig.align='center',fig.width=6,message=FALSE}
pca1 <- prinComp(psl.anom, n.eofs = 1)
plotEOF(pca1, var = "psl", n.eofs = 1, backdrop.theme = "coastline",
main = "Leading EOF of MSLP anomaly")
```
The next lines of code extract the leading PC as a time-series grid, and plots it as a NAO-index time series (see [this link](https://climatedataguide.ucar.edu/sites/default/files/styles/node_lightbox_display/public/key_figures/climate_data_set/nao_pc_djf_2.gif?itok=rVOww1Wi) for a visual comparison with Hurrel's PC-based NAO-Index).
```{r,fig.align='center',message=FALSE}
nao <- PC2grid(pca1, scale = TRUE, opp = TRUE)
nao.index.ncep <- nao[["Data"]][1,,1,1]
years <- getYearsAsINDEX(ncep.psl)
plot(years, nao.index.ncep, ty = 'l', ylab = "NAO Index", xlab = "year")
pos <- which(nao.index.ncep > 0) ## Index of positive NAO years
neg <- setdiff(1:length(nao.index.ncep), pos) ## Index of negative NAO years
points(years[pos], nao.index.ncep[pos], pch = 19, col = "red")
points(years[neg], nao.index.ncep[neg], pch = 19, col = "blue")
abline(h = 0, lty = 3)
title(main = "PC-based NAO Index ")
```
### Hindcast NAO Index
First, the CFSv2 data are interpolated from the original model grid to the NCEP grid:
```{r,message=FALSE}
psl.cfs.interp <- interpGrid(grid = cfs.psl, new.coordinates = getGrid(ncep.psl))
```
Next, the same steps than in Sec. 1.2.1. are followed:
1. Anomaly calculation
```{r,message=FALSE}
psl.cfs.anom <- localScaling(psl.cfs.interp)
```
2. PC calculation. In this case, the PCs are obtained using the NCEP EOF previously calculated, using the function `grid2PCs` as follows:
```{r,message=FALSE}
cfs.pc.list <- grid2PCs(pca1, grid = psl.cfs.anom)
```
The output is a list with the first PC for each of the 24 members. It is then converted into a `matrix` (members in columns, years in rows), which is also scaled to get the final NAO-Index:
```{r,message=FALSE}
nao.index.cfs <- sapply(cfs.pc.list, function(x) scale(x)*-1)
```
```{r,fig.align='center',message=FALSE}
plot(years, nao.index.ncep, ty = 'l', ylab = "NAO Index", xlab = "year")
years.hind <- getYearsAsINDEX(cfs.psl)
apply(nao.index.cfs, MARGIN = 2, FUN = function(x) lines(years.hind, x, col = "grey75"))
legend("topleft", c("NCEP","CFSv2 (24 members)"), lty = 1, col = c(1, "grey70"), bty = "n")
```
## Correlation analysis
For simplicity, only the NCEP years overlapping the hindcast time period (1983-2010) are retained:
```{r}
ref <- intersect(years, years.hind)
nao.index.ncep <- nao.index.ncep[years %in% ref]
```
Next, the correlation between the ensemble mean and NCEP is calculated:
```{r}
cor(rowMeans(nao.index.cfs), nao.index.ncep)
```
The next lines of code, plot the observed Winter NAO Index against the hindcast predictions. Both the ensemble mean (orange line) and the individual members (red dots) are displayed:
```{r,fig.align='center',message=FALSE}
plot(ref, nao.index.ncep, ty = 'l', ylab = "NAO Index", xlab = "Year", ylim = c(-4,4), lwd = 2)
lines(ref, rowMeans(nao.index.cfs), col = "orange", lwd = 2)
legend("topright", c("NCEP","CFSv2 ensemble mean"), lty = 1, col = c(1,"orange"))
for (i in 1:length(ref)) {
points(rep(ref[i], ncol(nao.index.cfs)), nao.index.cfs[i,], cex = .4, pch = 19, col = "orange")
}
text(2008, 2.2, cex = 1.2, col = "blue", bty = "n", paste("r =", round(cor(rowMeans(nao.index.cfs), nao.index.ncep), 2)))
```
## Bootstrap analysis
For convenience, we next create a matrix (`nao.mat`) containing the NCEP NAO-Index in its first column, and the 24 NAO-Index members from CFSv2 in the remaining columns.
```{r}
nao.mat <- cbind(nao.index.ncep, nao.index.cfs)
```
The _ad-hoc_ function `boot.corr` is envisaged to perform the bootstrapping either on members, on years or on both variables simultaneously, as indicated by the argument `what`:
```{r}
boot.corr <- function(df, R = 1000, what = c("members", "years")) {
df <- df[complete.cases(df), ]
what <- match.arg(what, c("members", "years"), several.ok = TRUE)
mem <- 1:ncol(df)
yrs <- 1:nrow(df)
out <- rep(NA, R)
iter <- 1
ind.col <- 1:length(mem)
ind.row <- 1:length(yrs)
while (iter <= R) {
if ("members" %in% what) ind.col <- sample(mem, size = length(mem), replace = TRUE)
if ("years" %in% what) ind.row <- sample(yrs, size = length(yrs), replace = TRUE)
out[iter] <- cor(rowMeans(df[ind.row,ind.col]), df[ind.row,1])
iter <- iter + 1
}
return(out)
}
```
The boostrapped correlations are next computed, and the results summarized in a boxplot, similar to Fig. 4 in the paper:
```{r,fig.align='center'}
R = 5000 # Number of replicates
what.list <- list("members", "years", c("members","years"))
res <- vapply(1:length(what.list), FUN.VALUE = numeric(R), FUN = function(x) {
boot.corr(nao.mat, R, what = what.list[[x]])
})
boxplot(res, names = c("members", "years", "both"), ylab = "Pearson's r", xlab = "Resampled variable(s)")
title("CFSv2 Winter NAO predictions (24 members)")
mtext(paste0("Boostrapped Corr (", R, " replicates)"))
```
# VERIFICATION OF MEAN WINTER TEMPERATURE FORECASTS IN THE NORTH-ATLANTIC DOMAIN
****
**NOTE: the already post-processed datasets used in this section are available for direct download (skip this section and jump to Section 3.2 if loaded through the next lines of code)**
```{r,eval=FALSE}
## NCEP
url <- "http://meteo.unican.es/work/UDG/NCEP_tas_DJF_annual_1983_2010_LD.Rdata"
temp_file <- tempfile()
download.file(url, destfile = temp_file)
load(temp_file, .GlobalEnv, verbose = TRUE)
## CFSv2
url <- "http://meteo.unican.es/work/UDG/CFS_24_lm1_tas_DJF_annual_1983_2010_LD.Rdata"
temp_file <- tempfile()
download.file(url, destfile = temp_file)
load(temp_file, .GlobalEnv, verbose = TRUE)
```
****
The geographical window used for the NAO Index calculation is defined:
```{r,eval=FALSE}
lonLim = c(-90,40)
latLim = c(20,80)
```
## Data loading
```{r,echo=FALSE}
load("data/NCEP_tas_DJF_annual_1983_2010_LD.Rdata",verbose = F)
load("data/CFS_24_lm1_tas_DJF_annual_1983_2010_LD.Rdata",verbose = F)
```
### NCEP reanalysis
```{r,eval=FALSE}
tas.ncep <- loadECOMS(dataset = "NCEP_reanalysis1",
var = "tas",
lonLim = lonLim,
latLim = latLim,
season = c(12,1,2),
years = NULL,
time = "DD",
aggr.d = "mean",
aggr.m = "mean")
```
Next we represent the mean temperature winter climatology:
```{r,fig.align='center',message=FALSE}
plotClimatology(climatology(tas.ncep), backdrop.theme = "coastline", main = "NCEP DJF Mean Temperature (1983-2010)")
```
### CFSv2 seasonal hindcast
Next, the CFSv2 temperature hindcast predictions are loaded. Note that the arguments passed to `loadECOMS` are the same as in the previous call, but changing the value of `var` to `tas`, which is the harmonized name for near-surface air temperature:
```{r,eval=FALSE}
tas.cfs <- loadECOMS(dataset = "CFSv2_seasonal",
var = "tas",
lonLim = lonLim,
latLim = latLim,
season = c(12,1,2),
years = NULL,
time = "DD",
aggr.d = "mean",
aggr.m = "mean",
members = 1:24,
leadMonth = 1)
```
## Temporal aggregation and interpolation
Monthly data are annually aggregated:
```{r,eval=FALSE}
tas.ncep <- aggregateGrid(grid = tas.ncep, aggr.y = list(FUN = "mean"))
tas.cfs <- aggregateGrid(grid = tas.cfs, aggr.y = list(FUN = "mean"))
```
Furthermore, the CFSv2 data are interpolated to match the NCEP reanalysis grid:
```{r,message=FALSE,warning=FALSE}
tas.cfs <- interpGrid(tas.cfs, new.coordinates = getGrid(tas.ncep), method = "bilinear")
```
The resulting hindcast data are next plotted:
```{r,fig.align='center',fig.width=10,fig.height=9,message=FALSE}
plotClimatology(climatology(tas.cfs), backdrop.theme = "coastline", main = "Mean DJF Temperature (1983-2010)")
```
## Correlation analysis
```{r}
obs <- tas.ncep[["Data"]]
fcst <- tas.cfs[["Data"]]
cor <- veriApply(verifun = "EnsCorr", fcst = fcst, obs = obs, ensdim = 1, tdim = 2)
```
The object `corr` contains the correlation coefficients for each grid point. The bridging function `easyVeri2grid` from package `transformeR` performs the transformation from the raw verification matrices produced by `easyVerification` to the grid structure with all the required metadata for data collocation and representation handled by the `climate4R` bundle packages (including `transformeR`):
```{r}
cor.grid <- easyVeri2grid(easyVeri.mat = cor, obs.grid = tas.ncep, verifun = "EnsCorr")
```
It is now straightforward the representation of the correlation map, that is treated as a climatology (i.e., the time dimension is a singleton). Additional arguments are needed in order to mimic the spectral color palette used in the paper (previously defined in Sec. 1.4). Extremely flexible plotting options are available, since `plotClimatology` is a wrapper for the powerful `spplot` method for spatial representation of geospatial `sp` objects in R, thus accepting all its arguments.
```{r,message=FALSE,fig.align='center'}
plotClimatology(climatology(cor.grid),
backdrop.theme = "countries",
col.regions = veri.colors(51), ## Define color palette
at = seq(-1,1,.05), ## Set range of values
colorkey = list(space = "bottom"), ## Place legend at bottom
main = "Ensemble correlation",
sub = "CFSv2 24 member - DJF Mean Temperature (1983-2010)")
```
# VERIFICATION OF MEAN WINTER TEMPERATURE OVER WESTERN EUROPE
****
**NOTE: the already post-processed datasets used in this section are available for direct download (skipt this section and jump to Section 4.2 if loaded this way):**
```{r,eval=FALSE}
## EOBS mean temperature
url <- "http://meteo.unican.es/work/UDG/EOBS_tas_DJF_annual_1983_2010.Rdata"
temp_file <- tempfile()
download.file(url, destfile = temp_file)
load(temp_file, .GlobalEnv, verbose = TRUE)
## CFSv2
url <- "http://meteo.unican.es/work/UDG/CFS_24_tas_DJF_annual_1983_2010.Rdata"
temp_file <- tempfile()
download.file(url, destfile = temp_file)
load(temp_file, .GlobalEnv, verbose = TRUE)
```
```{r,echo=FALSE}
load("data/CFS_24_tas_DJF_annual_1983_2010.Rdata", verbose = FALSE)
```
## Data loading
### CFSv2 temperature
A spatial window centered in western Europe is next defined. The harmonized name for near-surface temperature is `"tas"`, being its units degrees Celsius (see `UDG.vocabulary()`):
```{r}
lonLim = c(-10,30)
latLim = c(35,70)
```
```{r,eval=FALSE}
tas.cfs <- loadECOMS(dataset = "CFSv2_seasonal",
var = "tas",
lonLim = lonLim,
latLim = latLim,
members = 1:24,
years = 1983:2010,
leadMonth = 1,
season = c(12,1,2),
time = "DD",
aggr.d = "mean",
aggr.m = "mean")
```
Data are next annually aggregated:
```{r,eval=FALSE}
tas.cfs <- aggregateGrid(tas.cfs, aggr.y = list(FUN = "mean"))
```
The ensemble mean climatology is next plotted. Note the argument `by.member = FALSE` passed to function `climatology` to this aim. The default behaviour is to compute the climatology for each member sepparately (as in Sec. 2.1.3).
```{r,fig.align='center',message=FALSE}
plotClimatology(grid = climatology(tas.cfs, by.member = FALSE), backdrop.theme = "countries",
main = "CFSv2 Mean DJF temperature predictions (1983-2010)")
```
### Loading remote data outside the UDG: example with EOBSv14
```{r,echo=FALSE}
load("data/EOBS_tas_DJF_annual_1983_2010.Rdata")
```
In this example, gridded observations from the EOBS database are directly loaded from the KNMI's OPeNDAP server. Unlike the previous loading examples with `loadECOMS`, in this case, by default, the original variable naming of the native dataset has to be used, although any dataset can be harmonized by preparing a user defined _dictionary_, able to translate the dataset names to the UDG vocabulary convention, undertaking the necessary variable transformations to match the canonical units (see `UDG.vocabulary()`). This process is further detailed with examples in the [loadeR's wiki](https://github.com/SantanderMetGroup/loadeR/wiki/Harmonization).
In order to find out the characteristics of the remote dataset prior to data loading, a preliminary inventory of available data can be undertaken. This inventory will provide all the necessary information for data collocation (temporal and spatial extent of the dataset, units, names of the variable(s) ...):
****
**NOTE: The EOBS dataset has periodical version updates affecting the target URL. Thus, the link below may be not valid anymore after EOBS update. Thus, it is recommended to visit the [E-OBS catalog](http://opendap.knmi.nl/knmi/thredds/e-obs/e-obs-catalog.html) prior to data loading/inventoring.**
****
```{r,eval=FALSE}
dataset = "http://opendap.knmi.nl/knmi/thredds/dodsC/e-obs_0.50regular/tg_0.50deg_reg_v14.0.nc"
di <- dataInventory(dataset)
str(di)
```
```
## List of 1
## $ tg:List of 4
## ..$ Description: chr "mean temperature"
## ..$ DataType : chr "float"
## ..$ Units : chr "Celsius"
## ..$ Dimensions :List of 3
## .. ..$ time:List of 4
## .. .. ..$ Type : chr "Time"
## .. .. ..$ TimeStep : chr "1.0 days"
## .. .. ..$ Units : chr "days since 1950-01-01 00:00"
## .. .. ..$ Date_range: chr "1950-01-01T00:00:00Z - 2016-08-31T00:00:00Z"
## .. ..$ lat :List of 3
## .. .. ..$ Type : chr "Lat"
## .. .. ..$ Units : chr "degrees_north"
## .. .. ..$ Values: num [1:101] 25.2 25.8 26.2 26.8 27.2 ...
## .. ..$ lon :List of 3
## .. .. ..$ Type : chr "Lon"
## .. .. ..$ Units : chr "degrees_east"
## .. .. ..$ Values: num [1:232] -40.2 -39.8 -39.2 -38.8 -38.2 ...
```
Data loading uses the same arguments as the previous call to `loadECOMS`, but the generic `loadGridData` from package `loadeR` is used instead, that can be also used to load locally stored datasets. Note that `lonLim` and `latLim` arguments are now omitted, meaning that the whole spatial extent of the dataset (Europe in this case) will be loaded. Furthermore, the inventori reveals that the name of the variable, described as "mean temperature", is "tg" (`var = "tg"`). Thus, no data harmonization is being undertaken in this case (`dictionary = FALSE`). Also, the argument `years` is set to the period 1983-2010, to match the CFSv2 hindcast period already loaded:
```{r, eval=FALSE}
eobs.tas <- loadGridData(dataset = dataset,
var = "tg",
years = 1983:2010,
season = c(12,1,2),
time = "DD",
aggr.d = "mean",
aggr.m = "mean",
dictionary = FALSE)
```
Annual aggregation of loaded data:
```{r,eval=FALSE}
eobs.tas <- aggregateGrid(eobs.tas, aggr.y = list(FUN = "mean"))
```
This is the climatology of the EOBS dataset for mean winter temperature:
```{r,fig.align='center',message=FALSE}
plotClimatology(climatology(eobs.tas),
backdrop.theme = "countries", ## Add map
main = "EOBSv14: Mean DJF temperature (1983-2010)", ## Add title
xlim = c(-15,35), ylim = c(30,70)) ## map boundaries
```
## Interpolation
Prior to verification, the EOBS data is interpolated to the model grid, using nearest neighbors:
```{r,message=FALSE,warning=FALSE}
eobs.tas <- interpGrid(eobs.tas, new.coordinates = getGrid(tas.cfs))
```
, and next the reference climatology is plotted.
```{r,fig.align='center',message=FALSE}
plotClimatology(climatology(eobs.tas),
backdrop.theme = "countries", ## Add map
scales = list(draw = TRUE), ## Add geo coordinates to plot frame
main = "EOBSv14 in the CFSv2 grid")
```
## Ensemble Correlation
The function `veriApply` from package `easyVerification` can be directly applied to the climate grids. In this case, we apply the Ensemble correlation verification function (`verifun = "EnsCorr"`).
```{r,message=FALSE}
obs <- eobs.tas[["Data"]]
fcst <- tas.cfs[["Data"]]
cor <- veriApply(verifun = "EnsCorr", fcst = fcst, obs = obs, ensdim = 1, tdim = 2)
```
The object `corr` contains the correlation coefficients for each grid point. The function `easyVeri2grid` of package `transformeR` performs the transformation from the raw verification matrices to the grid structure with all the required metadata for data collocation and representation:
```{r}
cor.grid <- easyVeri2grid(easyVeri.mat = cor, obs.grid = eobs.tas, verifun = "EnsCorr")
```
It is now straightforward the representation of the correlation map, that is treated as a climatology (i.e., the time dimension is a singleton):
```{r,message=FALSE,fig.align='center'}
plotClimatology(climatology(cor.grid),
backdrop.theme = "countries",
col.regions = veri.colors(21), ## Define color palette
at = seq(-1,1,.1), ## Set range of values
main = "Ensemble correlation",
sub = "CFSv2 24 member - DJF Mean Temperature (1983-2010)")
```
## ROC Area
Next, we compute the Area under the ROC curve, considering the mean temperature terciles:
```{r, message=FALSE}
roca <- veriApply(verifun = "EnsRoca",
fcst = fcst,
obs = obs,
prob = c(1/3,2/3), ## Tercile probabilities
tdim = 2,
ensdim = 1)
```
For the spatial representation, we create a transformer `multiGrid`, that stacks the ROC area maps for the three terciles in the same grid object (note that only the three first columns of object `roca` are considered, since the remaining three correspond to the standard error for each category):
```{r,fig.width=9}
l <- lapply(roca[1:3], "easyVeri2grid", eobs.tas)
mg <- makeMultiGrid(l)
str(mg)
plotClimatology(mg,
backdrop.theme = "countries",
col.regions = veri.colors(21), at = seq(0,1,.05),
names.attr = c("Lower tercile", "Middle tercile", "Upper tercile"),
layout = c(3,1),
main = "Area under the ROC curve",
sub = "CFSv2 24 member - DJF Mean Temperature (1983-2010)")
```
<!--
## Persistence analysis
```{r}
pers <- persistence(eobs.tas, lag = 1)
plotClimatology(climatology(pers),
backdrop.theme = "countries",
at = seq(-1,1,.05),
ylim = c(35,72),
xlim = c(-12,30),
main = "EOBSv14.0 DJF temp / 1-year lag persistence - 1982-2010")
```
-->
# REFERENCES
* Bedia, J. and Iturbide, M. (2017). transformeR: Climate data post-processing. R package version 0.0.9. https://github.com/SantanderMetGroup/transformeR/wiki.
* Kalnay, E. _et al._ 1996. The NCEP/NCAR 40-Year Reanalysis Project. _Bulletin of the American Meteorological Society_ **77**, 437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
* Klein Tank, A.M.G. _et al._ 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. _Int. J. Climatol._ **22**, 1441–1453. doi:10.1002/joc.773
* MeteoSwiss (2017). easyVerification: Ensemble Forecast Verification for Large Data Sets. R package version 0.4.1.
https://CRAN.R-project.org/package=easyVerification
* R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
* Saha, S. _et al._ 2013. The NCEP Climate Forecast System Version 2. _J Clim_. doi:10.1175/JCLI-D-12-00823.1
* Siegert, S. (2017). SpecsVerification: Forecast Verification Routines for Ensemble Forecasts of Weather and Climate. R package version 0.5-2. https://CRAN.R-project.org/package=SpecsVerification
* Wickham, H. and Chang, W. (2016). devtools: Tools to Make Developing R Packages Easier. R package version 1.12.0. https://CRAN.R-project.org/package=devtools
# SESSION INFORMATION AND PACKAGE VERSIONS
```{r}
print(sessionInfo(package = c("loadeR",
"loadeR.ECOMS",
"transformeR",
"easyVerification",
"SpecsVerification")))
```