Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bulkPseudotime(expMat = exps)运行错误,永不完结 #1

Open
Leiyan22 opened this issue Jul 8, 2024 · 5 comments
Open

bulkPseudotime(expMat = exps)运行错误,永不完结 #1

Leiyan22 opened this issue Jul 8, 2024 · 5 comments

Comments

@Leiyan22
Copy link

Leiyan22 commented Jul 8, 2024

Junjun大神您好!
对您的开发速度赶到无比惊讶。
感谢您的努力。

我遇到了一个问题,当我试图运行

library(bulkPseudotime)
library(ClusterGVis)

# load test data
data(exps)

# check
head(exps,3) #到这步没问题

可是到下一步时

psetime_res <- bulkPseudotime(expMat = exps)

出现如下错误一直滚动,需要手动停止

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,  :
  Chernobyl! trL>n 6

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,  :
  Chernobyl! trL>n 6

Warning in sqrt(sum.squares/one.delta) : NaNs produced
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,  :
  Chernobyl! trL>n 6

Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,  :
  Chernobyl! trL>n 6

Warning in sqrt(sum.squares/one.delta) : NaNs produced
Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric,  :
  Chernobyl! trL>n 6

环境如下

R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Monterey 12.7.5

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Asia/Tokyo
tzcode source: internal

attached base packages:
[1] splines   stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ClusterGVis_0.1.1    monocle_2.32.0       DDRTree_0.1.5        irlba_2.3.5.1       
 [5] VGAM_1.1-11          ggplot2_3.5.1        Biobase_2.64.0       BiocGenerics_0.50.0 
 [9] Matrix_1.7-0         bulkPseudotime_0.0.1

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          rstudioapi_0.16.0           jsonlite_1.8.8             
  [4] shape_1.4.6.1               magrittr_2.0.3              magick_2.8.3               
  [7] TH.data_1.1-2               estimability_1.5.1          nloptr_2.1.1               
 [10] rmarkdown_2.27              GlobalOptions_0.1.2         zlibbioc_1.50.0            
 [13] vctrs_0.6.5                 Cairo_1.6-2                 minqa_1.2.7                
 [16] memoise_2.0.1               fastICA_1.2-4               htmltools_0.5.8.1          
 [19] S4Arrays_1.4.1              broom_1.0.6                 SparseArray_1.4.8          
 [22] parallelly_1.37.1           HSMMSingleCell_1.24.0       htmlwidgets_1.6.4          
 [25] plyr_1.8.9                  sandwich_3.1-0              emmeans_1.10.3             
 [28] zoo_1.8-12                  cachem_1.1.0                igraph_2.0.3               
 [31] lifecycle_1.0.4             iterators_1.0.14            pkgconfig_2.0.3            
 [34] R6_2.5.1                    fastmap_1.2.0               future_1.33.2              
 [37] GenomeInfoDbData_1.2.12     MatrixGenerics_1.16.0       clue_0.3-65                
 [40] digest_0.6.36               colorspace_2.1-0            AnnotationDbi_1.66.0       
 [43] S4Vectors_0.42.0            GenomicRanges_1.56.1        RSQLite_2.3.7              
 [46] org.Mm.eg.db_3.19.1         fansi_1.0.6                 httr_1.4.7                 
 [49] abind_1.4-5                 compiler_4.4.0              bit64_4.0.5                
 [52] withr_3.0.0                 doParallel_1.0.17           backports_1.5.0            
 [55] viridis_0.6.5               DBI_1.2.3                   UpSetR_1.4.0               
 [58] MASS_7.3-61                 DelayedArray_0.30.1         rjson_0.2.21               
 [61] scatterplot3d_0.3-44        flashClust_1.01-2           tools_4.4.0                
 [64] FactoMineR_2.11             glue_1.7.0                  nlme_3.1-165               
 [67] grid_4.4.0                  Rtsne_0.17                  cluster_2.1.6              
 [70] reshape2_1.4.4              generics_0.1.3              gtable_0.3.5               
 [73] tidyr_1.3.1                 utf8_1.2.4                  XVector_0.44.0             
 [76] ggrepel_0.9.5               RANN_2.6.1                  foreach_1.5.2              
 [79] pillar_1.9.0                stringr_1.5.1               limma_3.60.3               
 [82] circlize_0.4.16             dplyr_1.1.4                 lattice_0.22-6             
 [85] survival_3.7-0              bit_4.0.5                   tidyselect_1.2.1           
 [88] monocle3_1.3.7              SingleCellExperiment_1.26.0 ComplexHeatmap_2.20.0      
 [91] Biostrings_2.72.1           knitr_1.48                  gridExtra_2.3              
 [94] IRanges_2.38.0              SummarizedExperiment_1.34.0 xfun_0.45                  
 [97] statmod_1.5.0               matrixStats_1.3.0           pheatmap_1.0.12            
[100] DT_0.33                     leidenbase_0.1.27           stringi_1.8.4              
[103] UCSC.utils_1.0.0            boot_1.3-30                 yaml_2.3.9                 
[106] evaluate_0.24.0             codetools_0.2-20            tibble_3.2.1               
[109] multcompView_0.1-10         cli_3.6.3                   xtable_1.8-4               
[112] munsell_0.5.1               modelr_0.1.11               Rcpp_1.0.12                
[115] GenomeInfoDb_1.40.1         globals_0.16.3              coda_0.19-4.1              
[118] png_0.1-8                   parallel_4.4.0              leaps_3.2                  
[121] blob_1.2.4                  lme4_1.1-35.5               listenv_0.9.1              
[124] viridisLite_0.4.2           mvtnorm_1.2-5               slam_0.1-50                
[127] scales_1.3.0                purrr_1.0.2                 crayon_1.5.3               
[130] combinat_0.0-8              GetoptLong_1.0.5            rlang_1.1.4                
[133] KEGGREST_1.44.1             multcomp_1.4-25  

感谢您的帮助!

@junjunlab
Copy link
Owner

我这没有问题,你试试在windows上试试?我的是windows系统。

@junjunlab
Copy link
Owner

重新安装一下,应该是所有样本为0的基因

@Leiyan22
Copy link
Author

感谢junjun大神的升级和回复 : )
我运行了如下代码,重新安装了此包
devtools::install_github("junjunlab/bulkPseudotime", force = TRUE)
又运行了如下代码
psetime_res <- bulkPseudotime(expMat = exps)

结果还是一样同样的结果
Show in New Window Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : Chernobyl! trL>n 6 Warning in simpleLoess(y, x, w, span, degree = degree, parametric = parametric, : Chernobyl! trL>n 6 Warning in sqrt(sum.squares/one.delta) : NaNs produced

但是没关系,我复制您的源代码然后一步步调试着也能用 😄
谢谢! 🌹

@Leiyan22 Leiyan22 reopened this Jul 10, 2024
@CQMUyan
Copy link

CQMUyan commented Jul 14, 2024

我也有同样的报错,代码可以运行,就是有warning

@junjunlab
Copy link
Owner

可以把矩阵发我看看。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants