-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathmain.py
330 lines (268 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import argparse
import os
import time
import shutil
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from models import *
parser = argparse.ArgumentParser(description='PyTorch Cifar10 Training')
parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size (default: 128),only used for train')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('-ct', '--cifar-type', default='10', type=int, metavar='CT', help='10 for cifar10,100 for cifar100 (default: 10)')
best_prec = 0
def main():
global args, best_prec
args = parser.parse_args()
use_gpu = torch.cuda.is_available()
# Model building
print('=> Building model...')
if use_gpu:
# model can be set to anyone that I have defined in models folder
# note the model should match to the cifar type !
model = resnet20_cifar()
# model = resnet32_cifar()
# model = resnet44_cifar()
# model = resnet110_cifar()
# model = preact_resnet110_cifar()
# model = resnet164_cifar(num_classes=100)
# model = resnet1001_cifar(num_classes=100)
# model = preact_resnet164_cifar(num_classes=100)
# model = preact_resnet1001_cifar(num_classes=100)
# model = wide_resnet_cifar(depth=26, width=10, num_classes=100)
# model = resneXt_cifar(depth=29, cardinality=16, baseWidth=64, num_classes=100)
#model = densenet_BC_cifar(depth=190, k=40, num_classes=100)
# mkdir a new folder to store the checkpoint and best model
if not os.path.exists('result'):
os.makedirs('result')
fdir = 'result/resnet20_cifar10'
if not os.path.exists(fdir):
os.makedirs(fdir)
# adjust the lr according to the model type
if isinstance(model, (ResNet_Cifar, PreAct_ResNet_Cifar)):
model_type = 1
elif isinstance(model, Wide_ResNet_Cifar):
model_type = 2
elif isinstance(model, (ResNeXt_Cifar, DenseNet_Cifar)):
model_type = 3
else:
print('model type unrecognized...')
return
model = nn.DataParallel(model).cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
cudnn.benchmark = True
else:
print('Cuda is not available!')
return
if args.resume:
if os.path.isfile(args.resume):
print('=> loading checkpoint "{}"'.format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec = checkpoint['best_prec']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Data loading and preprocessing
# CIFAR10
if args.cifar_type == 10:
print('=> loading cifar10 data...')
normalize = transforms.Normalize(mean=[0.491, 0.482, 0.447], std=[0.247, 0.243, 0.262])
train_dataset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2)
test_dataset = torchvision.datasets.CIFAR10(
root='./data',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=100, shuffle=False, num_workers=2)
# CIFAR100
else:
print('=> loading cifar100 data...')
normalize = transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276])
train_dataset = torchvision.datasets.CIFAR100(
root='./data',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=2)
test_dataset = torchvision.datasets.CIFAR100(
root='./data',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=100, shuffle=False, num_workers=2)
if args.evaluate:
validate(testloader, model, criterion)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, model_type)
# train for one epoch
train(trainloader, model, criterion, optimizer, epoch)
# evaluate on test set
prec = validate(testloader, model, criterion)
# remember best precision and save checkpoint
is_best = prec > best_prec
best_prec = max(prec,best_prec)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec': best_prec,
'optimizer': optimizer.state_dict(),
}, is_best, fdir)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train(trainloader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.train()
end = time.time()
for i, (input, target) in enumerate(trainloader):
# measure data loading time
data_time.update(time.time() - end)
input, target = input.cuda(), target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec = accuracy(output, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec {top1.val:.3f}% ({top1.avg:.3f}%)'.format(
epoch, i, len(trainloader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
input, target = input.cuda(), target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec = accuracy(output, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec {top1.val:.3f}% ({top1.avg:.3f}%)'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec {top1.avg:.3f}% '.format(top1=top1))
return top1.avg
def save_checkpoint(state, is_best, fdir):
filepath = os.path.join(fdir, 'checkpoint.pth')
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(fdir, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch, model_type):
"""For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs"""
if model_type == 1:
if epoch < 80:
lr = args.lr
elif epoch < 120:
lr = args.lr * 0.1
else:
lr = args.lr * 0.01
elif model_type == 2:
if epoch < 60:
lr = args.lr
elif epoch < 120:
lr = args.lr * 0.2
elif epoch < 160:
lr = args.lr * 0.04
else:
lr = args.lr * 0.008
elif model_type == 3:
if epoch < 150:
lr = args.lr
elif epoch < 225:
lr = args.lr * 0.1
else:
lr = args.lr * 0.01
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__=='__main__':
main()