-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
31 lines (29 loc) · 1.17 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import tensorflow as tf
import logging
import os
import json
import sys
def predict_img(model, img_path):
image = tf.keras.preprocessing.image.load_img(img_path, target_size=(180, 180))
image_p = tf.keras.preprocessing.image.img_to_array(image)
image_p = image_p.reshape((1, image_p.shape[0], image_p.shape[1], image_p.shape[2]))
image_p = tf.keras.applications.resnet.preprocess_input(image_p)
pred = model.predict(image_p)
pred_string = 'Cat' if pred[0][0] > 0.5 else 'Dog'
print(f'Prediction is: {pred_string}\nConfidence is: {max(pred[0])}')
if __name__ == '__main__':
paths = sys.argv[1:]
if len(paths) == 0:
print('Please pass the paths as program argument.')
sys.exit()
logging.getLogger('tensorflow').setLevel(logging.FATAL)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
json_file = open('resnet50.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model_json = json.loads(loaded_model_json)
model = tf.keras.models.model_from_config(loaded_model_json, custom_objects=None)
model.load_weights('resnet50.h5')
for path in paths:
print(path)
predict_img(model, path)