-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathAED_train.py
761 lines (576 loc) · 23.8 KB
/
AED_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#!/usr/bin/env python
print "HANDLING IMPORTS..."
import sys
import os
import time
import operator
import math
import numpy as np
import matplotlib.pyplot as plt
import cv2
from scipy import interpolate
from sklearn.utils import shuffle
from sklearn.metrics import confusion_matrix
import itertools
import pickle
import theano
import theano.tensor as T
from lasagne import random as lasagne_random
from lasagne import layers as l
from lasagne import nonlinearities
from lasagne import init
from lasagne import objectives
from lasagne import updates
from lasagne import regularization
from utils import batch_generator as bg
print "...DONE!"
sys.setrecursionlimit(10000)
######################## CONFIG #########################
#Fixed random seed
RANDOM_SEED = 1337
RANDOM = np.random.RandomState(RANDOM_SEED)
lasagne_random.set_rng(RANDOM)
#Dataset params
DATASET_PATH = 'dataset/train/spec/'
MIN_SAMPLES_PER_CLASS = -1
MAX_SAMPLES_PER_CLASS = None
SORT_CLASSES_ALPHABETICALLY = True
VAL_SPLIT = 0.1
USE_CACHE = False
#Multi-Label Params
MULTI_LABEL = False
VAL_HAS_MULTI_LABEL = False
MEAN_TARGETS_PER_IMAGE = 3
#Image params
IM_SIZE = (512, 256) #(width, height)
IM_DIM = 1
IM_AUGMENTATION = {#'type':[probability, value]
'roll':[0.5, (0.0, 0.05)],
#'noise':[0.1, 0.01],
#'brightness':[0.5, (0.25, 1.25)],
#'crop':[0.5, 0.07],
#'flip': [0.25, 1]
}
#General model params
DROPOUT = 0.5
NONLINEARITY = nonlinearities.rectify
INIT_GAIN = math.sqrt(2)
#Training params
BATCH_SIZE = 32
LEARNING_RATE = {0:0.001, 55:0.000001} #epoch:lr
LR_DESCENT = True
L2_WEIGHT = 0 #1e-4
OPTIMIZER='adam' #'adam' or 'nesterov'
EPOCHS = 55
RANDOMIZE_TRAIN_SET = True
#Confusion matrix params
CONFMATRIX_MAX_CLASSES = 20
NORMALIZE_CONFMATRIX = True
#Model import/export params
MODEL_PATH = 'model/'
PRETRAINED_MODEL = None #'pretrained_model.pkl'
LOAD_OUTPUT_LAYER = True
EPOCH_START = 1
RUN_NAME = 'Example_Run'
SIMPLE_LOG_MODE = True
SNAPSHOT_EPOCHS = [10, 20, 30, 40, 50] #[-1] saves after every epoch
SAVE_AFTER_INTERRUPT = True
################### DATASAT HANDLING ####################
def parseDataset():
#we use subfolders as class labels
classes = [folder for folder in sorted(os.listdir(DATASET_PATH))]
if not SORT_CLASSES_ALPHABETICALLY:
classes = shuffle(classes, random_state=RANDOM)
#now we enlist all image paths for each class
images = []
tclasses = []
sample_count = {}
for c in classes:
c_images = [os.path.join(DATASET_PATH, c, path) for path in os.listdir(os.path.join(DATASET_PATH, c))][:MAX_SAMPLES_PER_CLASS]
sample_count[c] = len(c_images)
images += c_images
#Do we want to correct class imbalance?
#This will affect validation scores as we use some samples in TRAIN and VAL
while sample_count[c] < MIN_SAMPLES_PER_CLASS:
images += [c_images[RANDOM.randint(0, len(c_images))]]
sample_count[c] += 1
#shuffle image paths
images = shuffle(images, random_state=RANDOM)
#validation split
vsplit = int(len(images) * VAL_SPLIT)
train = images[:-vsplit]
val = images[-vsplit:]
#show classes if needed for testing
#print classes
#show some stats
print "CLASSES:", len(classes)
print "CLASS LABELS:", sorted(sample_count.items(), key=operator.itemgetter(1))
print "TRAINING IMAGES:", len(train)
print "VALIDATION IMAGES:", len(val)
return classes, train, val
#parse dataset
CLASSES, TRAIN, VAL = parseDataset()
NUM_CLASSES = len(CLASSES)
#################### BATCH HANDLING #####################
CACHE = {}
def openImage(path, useCache=USE_CACHE):
global CACHE
#using a dict {path:image} cache saves some time after first epoch
#but may consume a lot of RAM
if path in CACHE:
return CACHE[path]
else:
#open image
img = cv2.imread(path)
#DEBUG
try:
h, w = img.shape[:2]
except:
print "IMAGE NONE-TYPE:", path
#original image dimensions
try:
h, w, d = img.shape
#to gray?
if IM_DIM == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
except:
h, w = img.shape
#to color?
if IM_DIM == 3:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
#resize to conv input size
img = cv2.resize(img, (IM_SIZE[0], IM_SIZE[1]))
#convert to floats between 0 and 1
img = np.asarray(img / 255., dtype='float32')
if useCache:
CACHE[path] = img
return img
def imageAugmentation(img):
AUG = IM_AUGMENTATION
#Random Crop (without padding)
if 'crop' in AUG and RANDOM.choice([True, False], p=[AUG['crop'][0], 1 - AUG['crop'][0]]):
h, w = img.shape[:2]
cropw = RANDOM.randint(1, int(float(w) * AUG['crop'][1]))
croph = RANDOM.randint(1, int(float(h) * AUG['crop'][1]))
img = img[croph:-croph, cropw:-cropw]
img = cv2.resize(img, (IM_SIZE[0], IM_SIZE[1]))
#Flip - 1 = Horizontal, 0 = Vertical
if 'flip' in AUG and RANDOM.choice([True, False], p=[AUG['flip'][0], 1 - AUG['flip'][0]]):
img = cv2.flip(img, AUG['flip'][1])
#Wrap shift (roll up/down and left/right)
if 'roll' in AUG and RANDOM.choice([True, False], p=[AUG['roll'][0], 1 - AUG['roll'][0]]):
img = np.roll(img, int(img.shape[0] * (RANDOM.uniform(-AUG['roll'][1][1], AUG['roll'][1][1]))), axis=0)
img = np.roll(img, int(img.shape[1] * (RANDOM.uniform(-AUG['roll'][1][0], AUG['roll'][1][0]))), axis=1)
#substract/add mean
if 'mean' in AUG and RANDOM.choice([True, False], p=[AUG['mean'][0], 1 - AUG['mean'][0]]):
img += np.mean(img) * AUG['mean'][1]
#gaussian noise
if 'noise' in AUG and RANDOM.choice([True, False], p=[AUG['noise'][0], 1 - AUG['noise'][0]]):
img += RANDOM.normal(0.0, RANDOM.uniform(0, AUG['noise'][1]**0.5), img.shape)
img = np.clip(img, 0.0, 1.0)
#adjust brightness
if 'brightness' in AUG and RANDOM.choice([True, False], p=[AUG['brightness'][0], 1 - AUG['brightness'][0]]):
img *= RANDOM.uniform(AUG['brightness'][1][0], AUG['brightness'][1][1])
img = np.clip(img, 0.0, 1.0)
#show
#cv2.imshow("AUG", img)#.reshape(IM_SIZE[1], IM_SIZE[0], IM_DIM))
#cv2.waitKey(-1)
return img
def loadImageAndTarget(path, doAugmentation=True):
#here we open the image
img = openImage(path)
#image augmentation?
if IM_AUGMENTATION != None and doAugmentation:
img = imageAugmentation(img)
#we want to use subfolders as class labels
label = path.split("/")[-2]
#we need to get the index of our label from CLASSES
index = CLASSES.index(label)
#allocate array for target
target = np.zeros((NUM_CLASSES), dtype='float32')
#we set our target array = 1.0 at our label index, all other entries remain 0.0
target[index] = 1.0
#transpose image if dim=3
try:
img = np.transpose(img, (2, 0, 1))
except:
pass
#we need a 4D-vector for our image and a 2D-vector for our targets
img = img.reshape(-1, IM_DIM, IM_SIZE[1], IM_SIZE[0])
target = target.reshape(-1, NUM_CLASSES)
return img, target
def getAugmentedBatches(x, y):
#augment batch until desired number of target labels per image is reached
while np.mean(np.sum(y, axis=1)) < MEAN_TARGETS_PER_IMAGE:
#get two images to combine (we try to prevent i == j (which could result in infinite loops) with excluding ranges)
i = RANDOM.choice(range(1, x.shape[0] - 1))
j = RANDOM.choice(range(0, i) + range(i + 1, x.shape[0]))
#add images
x[i] += x[j]
#re-normalize new image
x[i] -= x[i].min(axis=None)
x[i] /= x[i].max(axis=None)
#combine targets (makes this task a multi-label classification!)
y[i] = np.logical_or(y[i], y[j])
#TODO: We still might end up in an infinite loop
#and should add a break in case something is fishy
#show
#cv2.imshow("BA", x[i].reshape(IM_SIZE[1], IM_SIZE[0], IM_DIM))
#cv2.waitKey(-1)
return x, y
def getDatasetChunk(split):
#get batch-sized chunks of image paths
for i in xrange(0, len(split), BATCH_SIZE):
yield split[i:i+BATCH_SIZE]
def getNextImageBatch(split=TRAIN, doAugmentation=True, batchAugmentation=MULTI_LABEL):
#fill batch
for chunk in getDatasetChunk(split):
#allocate numpy arrays for image data and targets
x_b = np.zeros((BATCH_SIZE, IM_DIM, IM_SIZE[1], IM_SIZE[0]), dtype='float32')
y_b = np.zeros((BATCH_SIZE, NUM_CLASSES), dtype='float32')
ib = 0
for path in chunk:
try:
#load image data and class label from path
x, y = loadImageAndTarget(path, doAugmentation)
#pack into batch array
x_b[ib] = x
y_b[ib] = y
ib += 1
except:
continue
#trim to actual size
x_b = x_b[:ib]
y_b = y_b[:ib]
#batch augmentation?
if batchAugmentation and x_b.shape[0] >= BATCH_SIZE // 2:
x_b, y_b = getAugmentedBatches(x_b, y_b)
#instead of return, we use yield
yield x_b, y_b
################## BUILDING THE MODEL ###################
def buildModel():
print "BUILDING MODEL TYPE..."
#default settings
filters = 64
first_stride = 2
last_filter_multiplier = 16
#input layer
net = l.InputLayer((None, IM_DIM, IM_SIZE[1], IM_SIZE[0]))
#conv layers
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters, filter_size=7, pad='same', stride=first_stride, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 2, filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 4, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 8, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * last_filter_multiplier, filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.MaxPool2DLayer(net, pool_size=2)
print "\tFINAL POOL OUT SHAPE:", l.get_output_shape(net)
#dense layers
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.DropoutLayer(net, DROPOUT)
net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
net = l.DropoutLayer(net, DROPOUT)
#Classification Layer
if MULTI_LABEL:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.sigmoid, W=init.HeNormal(gain=1))
else:
net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.softmax, W=init.HeNormal(gain=1))
print "...DONE!"
#model stats
print "MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"
print "MODEL HAS", l.count_params(net), "PARAMS"
return net
NET = buildModel()
################## MODEL SAVE/LOAD ####################
BEST_MODEL = None
BEST_EPOCH = 0
def saveModel(epoch, model=None):
print "EXPORTING MODEL...",
if model == None:
model = NET
net_filename = MODEL_PATH + "AED_" + RUN_NAME + "_model_epoch_" + str(epoch) + ".pkl"
if not os.path.exists(MODEL_PATH):
os.makedirs(MODEL_PATH)
with open(net_filename, 'w') as f:
#We want to save the model architecture with all params and trained classes
data = {'net': model, 'classes':CLASSES, 'run_name': RUN_NAME, 'epoch':epoch, 'im_size':IM_SIZE, 'im_dim':IM_DIM}
pickle.dump(data, f)
print "DONE!"
def loadModel(filename):
print "IMPORTING MODEL PARAMS...",
net_filename = MODEL_PATH + filename
with open(net_filename, 'rb') as f:
data = pickle.load(f)
#for training, we only want to load the model params
net = data['net']
params = l.get_all_param_values(net)
if LOAD_OUTPUT_LAYER:
l.set_all_param_values(NET, params)
else:
l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])
print "DONE!"
if PRETRAINED_MODEL != None:
loadModel(PRETRAINED_MODEL)
#################### LOSS FUNCTION ######################
def calc_loss(prediction, targets):
#categorical crossentropy is the best choice for a multi-class softmax output
loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
return loss
def calc_loss_multi(prediction, targets):
#we need to clip predictions when calculating the log-loss
prediction = T.clip(prediction, 0.0000001, 0.9999999)
#binary crossentropy is the best choice for a multi-class sigmoid output
loss = T.mean(objectives.binary_crossentropy(prediction, targets))
return loss
#theano variable for the class targets
targets = T.matrix('targets', dtype=theano.config.floatX)
#get the network output
prediction = l.get_output(NET)
#we use L2 Norm for regularization
l2_reg = regularization.regularize_layer_params(NET, regularization.l2) * L2_WEIGHT
#calculate the loss
if MULTI_LABEL:
loss = calc_loss_multi(prediction, targets) + l2_reg
else:
loss = calc_loss(prediction, targets) + l2_reg
################# ACCURACY FUNCTION #####################
def calc_accuracy(prediction, targets):
#we can use the lasagne objective categorical_accuracy to determine the top1 single label accuracy
a = T.mean(objectives.categorical_accuracy(prediction, targets, top_k=1))
return a
def calc_accuracy_multi(prediction, targets):
#we can use the lasagne objective binary_accuracy to determine the multi label accuracy
a = T.mean(objectives.binary_accuracy(prediction, targets))
return a
#calculate accuracy
if MULTI_LABEL and VAL_HAS_MULTI_LABEL:
accuracy = calc_accuracy_multi(prediction, targets)
else:
accuracy = calc_accuracy(prediction, targets)
####################### UPDATES #########################
#we use dynamic learning rates which change after some epochs
lr_dynamic = T.scalar(name='learning_rate')
#get all trainable parameters (weights) of our net
params = l.get_all_params(NET, trainable=True)
#we use the adam update
if OPTIMIZER == 'adam':
param_updates = updates.adam(loss, params, learning_rate=lr_dynamic, beta1=0.5)
elif OPTIMIZER == 'nesterov':
param_updates = updates.nesterov_momentum(loss, params, learning_rate=lr_dynamic, momentum=0.9)
#################### TRAIN FUNCTION ######################
#the theano train functions takes images and class targets as input
print "COMPILING THEANO TRAIN FUNCTION...",
start = time.time()
train_net = theano.function([l.get_all_layers(NET)[0].input_var, targets, lr_dynamic], loss, updates=param_updates)
print "DONE! (", int(time.time() - start), "s )"
################# PREDICTION FUNCTION ####################
#we need the prediction function to calculate the validation accuracy
#this way we can test the net during/after training
net_output = l.get_output(NET, deterministic=True)
print "COMPILING THEANO TEST FUNCTION...",
start = time.time()
test_net = theano.function([l.get_all_layers(NET)[0].input_var, targets], [net_output, loss, accuracy])
print "DONE! (", int(time.time() - start), "s )"
################## CONFUSION MATRIX #####################
cmatrix = []
def clearConfusionMatrix():
global cmatrix
#allocate empty matrix
cmatrix = np.zeros((NUM_CLASSES, NUM_CLASSES), dtype='int32')
def updateConfusionMatrix(p, t):
global cmatrix
#get class indices for prediction and target
targets = np.argmax(t, axis=1)
predictions = np.argmax(p, axis=1)
#add up confusion matrices of validation batches
cmatrix += confusion_matrix(targets, predictions, labels=range(0, NUM_CLASSES))
def showConfusionMatrix(epoch):
#new figure
plt.figure(0, figsize=(35, 35), dpi=72)
plt.clf()
#get additional metrics
pr, re, f1 = calculateMetrics()
#normalize?
if NORMALIZE_CONFMATRIX:
global cmatrix
cmatrix = np.around(cmatrix.astype('float') / cmatrix.sum(axis=1)[:, np.newaxis] * 100.0, decimals=1)
#show matrix
plt.imshow(cmatrix[:CONFMATRIX_MAX_CLASSES, :CONFMATRIX_MAX_CLASSES], interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion Matrix\n' +
RUN_NAME + ' - Epoch ' + str(epoch) +
'\nTrain Samples: ' + str(len(TRAIN)) + ' Validation Samples: ' + str(len(VAL)) +
'\nmP: ' + str(np.mean(pr)) + ' mF1: ' + str( np.mean(f1)), fontsize=32)
#tick marks
tick_marks = np.arange(min(CONFMATRIX_MAX_CLASSES, NUM_CLASSES))
plt.xticks(tick_marks, CLASSES[:CONFMATRIX_MAX_CLASSES], rotation=90)
plt.yticks(tick_marks, CLASSES[:CONFMATRIX_MAX_CLASSES])
#labels
thresh = cmatrix.max() / 2.
for i, j in itertools.product(range(min(CONFMATRIX_MAX_CLASSES, cmatrix.shape[0])), range(min(CONFMATRIX_MAX_CLASSES, cmatrix.shape[1]))):
plt.text(j, i, cmatrix[i, j],
horizontalalignment="center", verticalalignment="center",
color="white" if cmatrix[i, j] > thresh else "black", fontsize=32)
#axes labels
plt.tight_layout()
plt.ylabel('Target label', fontsize=32)
plt.xlabel('Predicted label', fontsize=32)
#fontsize
plt.rc('font', size=32)
#save plot
global cmcnt
if not os.path.exists('confmatrix'):
os.makedirs('confmatrix')
plt.savefig('confmatrix/' + RUN_NAME + '_' + str(epoch) + '.png')
def calculateMetrics():
#allocate arrays
pr = []
re = []
f1 = []
#parse rows and columns of confusion matrix
for i in range(0, cmatrix.shape[0]):
#true positives, false positves, false negatives
tp = float(cmatrix[i][i])
fp = float(np.sum(cmatrix, axis=1)[i] - tp)
fn = float(np.sum(cmatrix, axis=0)[i] - tp)
#precision
if tp > 0 or fp > 0:
p = tp / (tp + fp)
else:
p = 0
pr.append(p)
#recall
if tp > 0 or fn > 0:
r = tp / (tp + fn)
else:
r = 0
re.append(r)
#f1 measure
if p > 0 or r > 0:
f = 2 * ((p * r) / (p + r))
else:
f = 0
f1.append(f)
return pr, re, f1
###################### PROGRESS #########################
batches_per_epoch = len(TRAIN + VAL) // BATCH_SIZE + 1
avg_duration = []
last_update = -1
def showProgress(stat, duration, current, end=batches_per_epoch, update_interval=5, simple_mode=False):
#epochs might take a lot of time, so we want some kind of progress bar
#this approach is not very sophisticated, but it does the job :)
#you should use simple_mode=True if run with IDLE and simple_mode=False if run on command line
global avg_duration
global last_update
#time left
avg_duration.append(duration)
avg_duration = avg_duration[-10:]
r = int(abs(end - current) * np.mean(avg_duration) / 60) + 1
#percentage
p = int(current / float(end) * 100)
progress = ""
for s in xrange(update_interval, 100, update_interval):
if s <= p:
progress += "="
else:
progress += " "
#status line
if p > last_update and p % update_interval == 0 or last_update == -1:
if simple_mode:
if current == 1:
print stat.upper() + ": [",
else:
print "=",
if current == end:
print "]",
else:
print stat.upper() + ": [" + progress + "] BATCHES " + str(current) + "/" + str(end) + " (" + str(p) + "%) - " + str(r) + " min REMAINING\r",
last_update = p
###################### TRAINING #########################
print "START TRAINING..."
train_loss = []
val_loss = []
val_accuracy = []
max_acc = -1
lr = LEARNING_RATE[LEARNING_RATE.keys()[0]]
SAVE_MODEL_AFTER_TRAINING = True
#train for some epochs...
for epoch in range(EPOCH_START, EPOCHS + 1):
try:
#start timer
start = time.time()
#reset confusion matrix
clearConfusionMatrix()
#adjust learning rate (interpolate or steps)
if LR_DESCENT:
lr_keys = np.array(LEARNING_RATE.keys() + [EPOCHS], dtype='float32')
lr_values = np.array(LEARNING_RATE.values() + [LEARNING_RATE.values()[-1]], dtype='float32')
lr_func = interpolate.interp1d(lr_keys, lr_values, kind='linear')
lr = np.float32(lr_func(max(LEARNING_RATE.keys()[0], epoch - 1)))
else:
if epoch in LEARNING_RATE:
lr = LEARNING_RATE[epoch]
#shuffle dataset (this way we get "new" batches every epoch)
if RANDOMIZE_TRAIN_SET:
TRAIN = shuffle(TRAIN, random_state=RANDOM)
#time
bstart = time.time()
last_update = -1
#iterate over train split batches and calculate mean loss for epoch
t_l = []
bcnt = 0
for image_batch, target_batch in bg.threadedBatchGenerator(getNextImageBatch()):
#calling the training functions returns the current loss
loss = train_net(image_batch, target_batch, lr)
t_l.append(loss)
bcnt += 1
#show progress
showProgress("EPOCH " + str(epoch), (time.time() - bstart), bcnt, simple_mode=SIMPLE_LOG_MODE)
bstart = time.time()
#we validate our net every epoch and pass our validation split through as well
v_l = []
v_a = []
for image_batch, target_batch in bg.threadedBatchGenerator(getNextImageBatch(VAL, False, VAL_HAS_MULTI_LABEL)):
#calling the test function returns the net output, loss and accuracy
prediction_batch, loss, acc = test_net(image_batch, target_batch)
v_l.append(loss)
v_a.append(acc)
#save predicions and targets for confusion matrix
updateConfusionMatrix(prediction_batch, target_batch)
bcnt += 1
#show progress
showProgress("EPOCH " + str(epoch), (time.time() - bstart), bcnt, simple_mode=SIMPLE_LOG_MODE)
bstart = time.time()
#stop timer
end = time.time()
#calculate stats for epoch
train_loss.append(np.mean(t_l))
val_loss.append(np.mean(v_l))
val_accuracy.append(np.mean(v_a))
#print stats for epoch
print "TRAIN LOSS:", train_loss[-1],
print "VAL LOSS:", val_loss[-1],
print "VAL ACCURACY:", (int(val_accuracy[-1] * 1000) / 10.0), "%",
print "LR:", lr,
print "TIME:", (int((end - start) * 10) / 10.0), "s"
#log max accuracy and save best params
acc = (int(val_accuracy[-1] * 1000) / 10.0)
if acc >= max_acc:
max_acc = acc
BEST_MODEL = NET
BEST_EPOCH = epoch
#show confusion matrix
showConfusionMatrix(epoch)
#save snapshot?
if epoch in SNAPSHOT_EPOCHS or SNAPSHOT_EPOCHS[0] == -1:
saveModel(epoch)
except KeyboardInterrupt:
SAVE_MODEL_AFTER_TRAINING = SAVE_AFTER_INTERRUPT
break
print "TRAINING DONE!"
print "MAX ACC: ", max_acc
#save best model params
if SAVE_MODEL_AFTER_TRAINING:
saveModel(BEST_EPOCH, BEST_MODEL)