-
Notifications
You must be signed in to change notification settings - Fork 438
/
ngx_buffer_cache.c
609 lines (498 loc) · 14.3 KB
/
ngx_buffer_cache.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
#include "ngx_buffer_cache_internal.h"
/*
shared memory layout:
shared memory start
fixed size headers
entries_start
...
entries_end
buffers_start
...
buffers_end
shared memory end
the shared memory is composed of 3 sections:
1. fixed size headers - contains the ngx_slab_pool_t struct allocated by nginx,
the log context string and ngx_buffer_cache_sh_t
2. entries - an array of ngx_buffer_cache_entry_t, each entry has a key and
points to a buffer in the buffers section. the entries are connected with a
red/black tree for fast lookup by key. the entries section grows as needed until
it bumps into the buffers section. each entry is a member of one of 2 doubly
linked lists - the free queue and the used queue. the entries move between these
queues as they are allocated / deallocated
3. buffers - a cyclic queue of variable size buffers. the buffers section starts
at the end of the shared memory and grows towards its beginning until it bumps
into the entries section. the buffers section has 2 pointers:
a. when a buffer is allocated, it is allocated before the write head
b. when an entry is freed, the read head of the buffers section moves
*/
// Note: code taken from ngx_str_rbtree_insert_value, updated the node comparison
static void
ngx_buffer_cache_rbtree_insert_value(
ngx_rbtree_node_t *temp,
ngx_rbtree_node_t *node,
ngx_rbtree_node_t *sentinel)
{
ngx_buffer_cache_entry_t *n, *t;
ngx_rbtree_node_t **p;
for (;;)
{
n = (ngx_buffer_cache_entry_t *)node;
t = (ngx_buffer_cache_entry_t *)temp;
if (node->key != temp->key)
{
p = (node->key < temp->key) ? &temp->left : &temp->right;
}
else
{
p = (ngx_memcmp(n->key, t->key, BUFFER_CACHE_KEY_SIZE) < 0)
? &temp->left : &temp->right;
}
if (*p == sentinel)
{
break;
}
temp = *p;
}
*p = node;
node->parent = temp;
node->left = sentinel;
node->right = sentinel;
ngx_rbt_red(node);
}
// Note: code taken from ngx_str_rbtree_lookup, updated the node comparison
static ngx_buffer_cache_entry_t *
ngx_buffer_cache_rbtree_lookup(ngx_rbtree_t *rbtree, const u_char* key, uint32_t hash)
{
ngx_buffer_cache_entry_t *n;
ngx_rbtree_node_t *node, *sentinel;
ngx_int_t rc;
node = rbtree->root;
sentinel = rbtree->sentinel;
while (node != sentinel)
{
n = (ngx_buffer_cache_entry_t *)node;
if (hash != node->key)
{
node = (hash < node->key) ? node->left : node->right;
continue;
}
rc = ngx_memcmp(key, n->key, BUFFER_CACHE_KEY_SIZE);
if (rc < 0)
{
node = node->left;
continue;
}
if (rc > 0)
{
node = node->right;
continue;
}
return n;
}
return NULL;
}
static void
ngx_buffer_cache_reset(ngx_buffer_cache_sh_t *cache)
{
cache->entries_end = cache->entries_start;
cache->buffers_start = cache->buffers_end;
cache->buffers_read = cache->buffers_end;
cache->buffers_write = cache->buffers_end;
ngx_rbtree_init(&cache->rbtree, &cache->sentinel, ngx_buffer_cache_rbtree_insert_value);
ngx_queue_init(&cache->used_queue);
ngx_queue_init(&cache->free_queue);
// update stats (everything is evicted)
cache->stats.evicted = cache->stats.store_ok;
cache->stats.evicted_bytes = cache->stats.store_bytes;
}
static ngx_int_t
ngx_buffer_cache_init(ngx_shm_zone_t *shm_zone, void *data)
{
ngx_buffer_cache_sh_t *sh;
ngx_buffer_cache_t *ocache = data;
ngx_buffer_cache_t *cache;
u_char* p;
cache = shm_zone->data;
if (ocache)
{
cache->sh = ocache->sh;
cache->shpool = ocache->shpool;
return NGX_OK;
}
cache->shpool = (ngx_slab_pool_t *)shm_zone->shm.addr;
if (shm_zone->shm.exists)
{
cache->sh = cache->shpool->data;
return NGX_OK;
}
// start following the ngx_slab_pool_t that was allocated at the beginning of the chunk
p = shm_zone->shm.addr + sizeof(ngx_slab_pool_t);
// initialize the log context
cache->shpool->log_ctx = p;
p = ngx_sprintf(cache->shpool->log_ctx, " in buffer cache \"%V\"%Z", &shm_zone->shm.name);
// allocate the shared cache state
p = ngx_align_ptr(p, sizeof(void *));
sh = (ngx_buffer_cache_sh_t*)p;
p += sizeof(*sh);
cache->sh = sh;
cache->shpool->data = sh;
// initialize fixed cache fields
p = ngx_align_ptr(p, sizeof(void *));
sh->entries_start = (ngx_buffer_cache_entry_t*)p;
sh->buffers_end = shm_zone->shm.addr + shm_zone->shm.size;
sh->access_time = 0;
// reset the stats
ngx_memzero(&sh->stats, sizeof(sh->stats));
// reset the cache status
ngx_buffer_cache_reset(sh);
sh->reset = 0;
return NGX_OK;
}
/* Note: must be called with the mutex locked */
static ngx_buffer_cache_entry_t*
ngx_buffer_cache_free_oldest_entry(ngx_buffer_cache_sh_t *cache, uint32_t expiration)
{
ngx_buffer_cache_entry_t* entry;
// verify we have an entry to free
if (ngx_queue_empty(&cache->used_queue))
{
return NULL;
}
// verify the entry is not locked
entry = container_of(ngx_queue_head(&cache->used_queue), ngx_buffer_cache_entry_t, queue_node);
if (entry->ref_count > 0 &&
ngx_time() < entry->access_time + ENTRY_LOCK_EXPIRATION)
{
return NULL;
}
// make sure the entry is expired, if that is the requirement
if (expiration && ngx_time() < (time_t)(entry->write_time + expiration))
{
return NULL;
}
// update the state
entry->state = CES_FREE;
// remove from rb tree
ngx_rbtree_delete(&cache->rbtree, &entry->node);
// move from used_queue to free_queue
ngx_queue_remove(&entry->queue_node);
ngx_queue_insert_tail(&cache->free_queue, &entry->queue_node);
if (ngx_queue_empty(&cache->used_queue))
{
// queue is empty reset the read/write pointers
cache->buffers_read = cache->buffers_end;
cache->buffers_write = cache->buffers_end;
}
else
{
// update the read buffer pointer
cache->buffers_read = entry->start_offset;
}
// update stats
cache->stats.evicted++;
cache->stats.evicted_bytes += entry->buffer_size;
return entry;
}
/* Note: must be called with the mutex locked */
static ngx_buffer_cache_entry_t*
ngx_buffer_cache_get_free_entry(ngx_buffer_cache_sh_t *cache)
{
ngx_buffer_cache_entry_t* entry;
if (!ngx_queue_empty(&cache->free_queue))
{
// return the free queue head
return container_of(ngx_queue_head(&cache->free_queue), ngx_buffer_cache_entry_t, queue_node);
}
if ((u_char*)(cache->entries_end + 1) < cache->buffers_start)
{
// enlarge the entries buffer
entry = cache->entries_end;
cache->entries_end++;
// initialize the state and add to free queue
entry->state = CES_FREE;
ngx_queue_insert_tail(&cache->free_queue, &entry->queue_node);
return entry;
}
return ngx_buffer_cache_free_oldest_entry(cache, 0);
}
/* Note: must be called with the mutex locked */
static u_char*
ngx_buffer_cache_get_free_buffer(
ngx_buffer_cache_sh_t *cache,
size_t size)
{
u_char* buffer_start;
// check whether it's possible to allocate the requested size
if ((u_char*)(cache->entries_end + ENTRIES_ALLOC_MARGIN) + size + BUFFER_ALIGNMENT > cache->buffers_end)
{
return NULL;
}
buffer_start = (u_char*)((intptr_t)(cache->buffers_write - size) & (~(BUFFER_ALIGNMENT - 1)));
for (;;)
{
// Layout: S W/////R E
if (cache->buffers_write < cache->buffers_read ||
(cache->buffers_write == cache->buffers_read && ngx_queue_empty(&cache->used_queue)))
{
if (buffer_start >= cache->buffers_start)
{
// have enough room here
return buffer_start;
}
if (buffer_start > (u_char*)(cache->entries_end + ENTRIES_ALLOC_MARGIN))
{
// enlarge the buffer
cache->buffers_start = buffer_start;
return buffer_start;
}
// cannot allocate here, move the write position to the end
cache->buffers_write = cache->buffers_end;
buffer_start = (u_char*)((intptr_t)(cache->buffers_write - size) & (~(BUFFER_ALIGNMENT - 1)));
continue;
}
// Layout: S////R W///E
if (buffer_start > cache->buffers_read)
{
// have enough room here
return buffer_start;
}
// not enough room, free an entry
if (ngx_buffer_cache_free_oldest_entry(cache, 0) == NULL)
{
break;
}
}
return NULL;
}
ngx_flag_t
ngx_buffer_cache_fetch(
ngx_buffer_cache_t* cache,
u_char* key,
ngx_str_t* buffer,
uint32_t* token)
{
ngx_buffer_cache_entry_t* entry;
ngx_buffer_cache_sh_t *sh = cache->sh;
ngx_flag_t result = 0;
uint32_t hash;
hash = ngx_crc32_short(key, BUFFER_CACHE_KEY_SIZE);
ngx_shmtx_lock(&cache->shpool->mutex);
if (!sh->reset)
{
entry = ngx_buffer_cache_rbtree_lookup(&sh->rbtree, key, hash);
if (entry != NULL && entry->state == CES_READY &&
(cache->expiration == 0 || ngx_time() < (time_t)(entry->write_time + cache->expiration)))
{
result = 1;
// update stats
sh->stats.fetch_hit++;
sh->stats.fetch_bytes += entry->buffer_size;
// copy buffer pointer and size
buffer->data = entry->start_offset;
buffer->len = entry->buffer_size;
*token = entry->write_time;
// Note: setting the access time of the entry and cache to prevent it
// from being freed while the caller uses the buffer
sh->access_time = entry->access_time = ngx_time();
(void)ngx_atomic_fetch_add(&entry->ref_count, 1);
}
else
{
// update stats
sh->stats.fetch_miss++;
}
}
ngx_shmtx_unlock(&cache->shpool->mutex);
return result;
}
void
ngx_buffer_cache_release(
ngx_buffer_cache_t* cache,
u_char* key,
uint32_t token)
{
ngx_buffer_cache_entry_t* entry;
ngx_buffer_cache_sh_t *sh = cache->sh;
uint32_t hash;
hash = ngx_crc32_short(key, BUFFER_CACHE_KEY_SIZE);
ngx_shmtx_lock(&cache->shpool->mutex);
if (!sh->reset)
{
entry = ngx_buffer_cache_rbtree_lookup(&sh->rbtree, key, hash);
if (entry != NULL && entry->state == CES_READY && (uint32_t)entry->write_time == token)
{
(void)ngx_atomic_fetch_add(&entry->ref_count, -1);
}
}
ngx_shmtx_unlock(&cache->shpool->mutex);
}
ngx_flag_t
ngx_buffer_cache_store_gather(
ngx_buffer_cache_t* cache,
u_char* key,
ngx_str_t* buffers,
size_t buffer_count)
{
ngx_buffer_cache_entry_t* entry;
ngx_buffer_cache_sh_t *sh = cache->sh;
ngx_str_t* cur_buffer;
ngx_str_t* last_buffer;
size_t buffer_size;
uint32_t hash;
uint32_t evictions;
u_char* target_buffer;
hash = ngx_crc32_short(key, BUFFER_CACHE_KEY_SIZE);
ngx_shmtx_lock(&cache->shpool->mutex);
if (sh->reset)
{
// a previous store operation was killed in progress, need to reset the cache
// since the data structures may be corrupt. we can only reset the cache after
// the access time expires since other processes may still be reading from /
// writing to the cache
if (ngx_time() < sh->access_time + CACHE_LOCK_EXPIRATION)
{
ngx_shmtx_unlock(&cache->shpool->mutex);
return 0;
}
// reset the cache, leave the reset flag enabled
ngx_buffer_cache_reset(sh);
// update stats
sh->stats.reset++;
}
else
{
// remove expired entries
if (cache->expiration)
{
for (evictions = MAX_EVICTIONS_PER_STORE; evictions > 0; evictions--)
{
if (!ngx_buffer_cache_free_oldest_entry(sh, cache->expiration))
{
break;
}
}
}
// make sure the entry does not already exist
entry = ngx_buffer_cache_rbtree_lookup(&sh->rbtree, key, hash);
if (entry != NULL)
{
sh->stats.store_exists++;
ngx_shmtx_unlock(&cache->shpool->mutex);
return 0;
}
// enable the reset flag before we start making any changes
sh->reset = 1;
}
// allocate a new entry
entry = ngx_buffer_cache_get_free_entry(sh);
if (entry == NULL)
{
goto error;
}
// calculate the buffer size
last_buffer = buffers + buffer_count;
buffer_size = 0;
for (cur_buffer = buffers; cur_buffer < last_buffer; cur_buffer++)
{
buffer_size += cur_buffer->len;
}
// allocate a buffer to hold the data
target_buffer = ngx_buffer_cache_get_free_buffer(sh, buffer_size + 1);
if (target_buffer == NULL)
{
goto error;
}
// initialize the entry
entry->state = CES_ALLOCATED;
entry->ref_count = 1;
entry->node.key = hash;
memcpy(entry->key, key, BUFFER_CACHE_KEY_SIZE);
entry->start_offset = target_buffer;
entry->buffer_size = buffer_size;
// update the write position
sh->buffers_write = target_buffer;
// move from free_queue to used_queue
ngx_queue_remove(&entry->queue_node);
ngx_queue_insert_tail(&sh->used_queue, &entry->queue_node);
// insert to rbtree
ngx_rbtree_insert(&sh->rbtree, &entry->node);
// update stats
sh->stats.store_ok++;
sh->stats.store_bytes += buffer_size;
// Note: the memcpy is performed after releasing the lock to avoid holding the lock for a long time
// setting the access time of the entry and cache prevents it from being freed
sh->access_time = entry->access_time = ngx_time();
entry->write_time = ngx_time();
sh->reset = 0;
ngx_shmtx_unlock(&cache->shpool->mutex);
for (cur_buffer = buffers; cur_buffer < last_buffer; cur_buffer++)
{
target_buffer = ngx_copy(target_buffer, cur_buffer->data, cur_buffer->len);
}
*target_buffer = '\0';
// Note: no need to obtain the lock since state is ngx_atomic_t
entry->state = CES_READY;
(void)ngx_atomic_fetch_add(&entry->ref_count, -1);
return 1;
error:
sh->stats.store_err++;
sh->reset = 0;
ngx_shmtx_unlock(&cache->shpool->mutex);
return 0;
}
ngx_flag_t
ngx_buffer_cache_store(
ngx_buffer_cache_t* cache,
u_char* key,
u_char* source_buffer,
size_t buffer_size)
{
ngx_str_t buffer;
buffer.data = source_buffer;
buffer.len = buffer_size;
return ngx_buffer_cache_store_gather(cache, key, &buffer, 1);
}
void
ngx_buffer_cache_get_stats(
ngx_buffer_cache_t* cache,
ngx_buffer_cache_stats_t* stats)
{
ngx_buffer_cache_sh_t *sh = cache->sh;
ngx_shmtx_lock(&cache->shpool->mutex);
memcpy(stats, &sh->stats, sizeof(sh->stats));
stats->entries = sh->entries_end - sh->entries_start;
stats->data_size = sh->buffers_end - sh->buffers_start;
ngx_shmtx_unlock(&cache->shpool->mutex);
}
void
ngx_buffer_cache_reset_stats(ngx_buffer_cache_t* cache)
{
ngx_shmtx_lock(&cache->shpool->mutex);
ngx_memzero(&cache->sh->stats, sizeof(cache->sh->stats));
ngx_shmtx_unlock(&cache->shpool->mutex);
}
ngx_buffer_cache_t*
ngx_buffer_cache_create(ngx_conf_t *cf, ngx_str_t *name, size_t size, time_t expiration, void *tag)
{
ngx_buffer_cache_t* cache;
cache = ngx_pcalloc(cf->pool, sizeof(ngx_buffer_cache_t));
if (cache == NULL)
{
return NGX_CONF_ERROR;
}
cache->expiration = expiration;
cache->shm_zone = ngx_shared_memory_add(cf, name, size, tag);
if (cache->shm_zone == NULL)
{
return NULL;
}
if (cache->shm_zone->data)
{
ngx_conf_log_error(NGX_LOG_EMERG, cf, 0,
"duplicate zone \"%V\"", name);
return NGX_CONF_ERROR;
}
cache->shm_zone->init = ngx_buffer_cache_init;
cache->shm_zone->data = cache;
return cache;
}