-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathch08_prioritized_sweeping.py
319 lines (251 loc) · 12.1 KB
/
ch08_prioritized_sweeping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
import heapq
from gridworld import BaseGridworld, print_grid, print_path
from agents import BaseAgent, QLearningAgent
from ch08_dyna_maze import Gridworld, DynaQAgent
# --------------------
# MDP
# --------------------
class ResGridworld(Gridworld):
def __init__(self, res, **kwargs):
# initialize with original arguments; then update based on resolution and manually reinitialize
super().__init__(**kwargs)
# compute the relative positions
orig_w = self.width
orig_h = self.height
orig_start_state = self.start_state
rel_start_state = (orig_start_state[0]/orig_w, orig_start_state[1]/orig_h)
orig_blocked_states = self.blocked_states
# reparametrize blocked states from (x,y) coords to (rel_x, rel_y, w, h) where xy are relative to width and height
rel_blocked_states = [(x/orig_w, y/orig_h, 1, 1) for (x,y) in orig_blocked_states]
# compute positions at the new resolution
self.width = res[0] * orig_w
self.height = res[1] * orig_h
self.start_state = (int(self.width*rel_start_state[0]), int(self.height*rel_start_state[1]))
self.goal_state = (self.width - 1, self.height - 1)
# new blocked states at the (x, y, w, h) parametrization need to be broken down into (x,y) pairs
blocked_states = [(int(self.width*rel_x), int(self.height*rel_y), res[0]*w, res[1]*h) \
for (rel_x, rel_y, w, h) in rel_blocked_states]
self.blocked_states = []
for (x, y, w, h) in blocked_states:
for i in range(w):
for j in range(h):
self.blocked_states.append((x+i, y+j))
# --------------------
# Agent and control algorithms
# --------------------
class PrioritizedSweepingAgent(QLearningAgent):
""" Prioritized sweeping algorithm per Section 8.4
Proposed upates to q values are kept in a priority queue as a list with python's heapq module.
Heapq as a min-heap returns the min entry; min comparison for a python tuple compares each element in turn to break ties.
Here the entry in the PQ is (-abs(proposed_update), -np.sign(proposed_update), (state, action)):
-- heap index -abs(value) returns the min of the negative absolute updates i.e. the maximum update in abolute value;
-- heap index -np.sign(value) returns the inverted sign of the actual update; thus heapq breaks ties for the first index
by returning the min of -sign
i.e. the entry with with + sign since rewards in this experiment are +1 for goal and 0 otherwise -- that is we'd like
to prioritize large positive updates to the q values
E.g.
proposed_update_1 = +1
heappush((-abs(1), -sign(1), ...)) pushes entry = (-1, -1, ...)
proposed_update_2 = -1
heappush((-abs(-1), -sign(-1), ...)) pushes entry = (-1, 1, ...)
min heap property returns (-1, -1, ...) first which corresponds to the update proposal +1
"""
def __init__(self, n_planning_steps, theta, **kwargs):
super().__init__(**kwargs)
self.n_planning_steps = n_planning_steps
self.theta = theta # the minimum magnitude of q_value update to be performed
def reset(self):
super().reset()
self.model = {}
self.pq = PriorityQueue()
self.predecessors = defaultdict(set)
def _update_predecessors(self, state, action, next_state):
# add predecessors as a set of (state, action) tuples
self.predecessors[next_state].add((state, action))
def update(self, state, action, reward, next_state):
""" Execute the Q-learning off-policy algorithm in Section 6.5 with
Prioritized Sweeping model update/planning in Section 8.4 """
# update model (Sec 8.4 - line (d))
# model assumes deterministic environment
self.model[(state, action)] = (reward, next_state)
# keep track of predecessors for the pq loop below
self._update_predecessors(state, action, next_state)
# compute q value proposed update and update priority queue (Sec 8.4 - line (e-f))
proposed_update = reward + self.discount * self.get_value(next_state) - self.get_q_value(state, action)
if abs(proposed_update) > self.theta:
self.pq.push((state,action), -abs(proposed_update))
# loop over n_planning steps while pq is not empty (Sec 8.4 - line(g)
for i in range(self.n_planning_steps):
if self.pq.is_empty():
break
# pop best update from queue and transition from model
state, action = self.pq.pop()
reward, next_state = self.model[(state, action)]
# update q values for this state-action pair
super().update(state, action, reward, next_state)
# loop for all S', A' predicted to lead to the above state
for s, a in self.predecessors[state]:
# get predicted reward from the predecessor leading to `state`
r, _ = self.model[(s, a)]
# calculate the proposed update to (s,a)
proposed_update = r + self.discount * self.get_value(state) - self.get_q_value(s, a)
# add to priority queue if greater than min threshold
if abs(proposed_update) > self.theta:
self.pq.push((s,a), -abs(proposed_update))
# --------------------
# Helper classes and functions
# --------------------
class PriorityQueue:
def __init__(self):
self.heap = []
self.key_index = {} # key to index mapping
self.count = 0
def push(self, item, priority):
entry = (priority, self.count, item)
heapq.heappush(self.heap, entry)
self.count += 1
def pop(self):
_, _, item = heapq.heappop(self.heap)
return item
def is_empty(self):
return len(self.heap) == 0
def update(self, item, priority):
for idx, (p, c, i) in enumerate(self.heap):
if i == item:
# item already in, so has either lower or higher priority
# if already in with smaller priority, don't do anything
if p <= priority:
break
# if already in with larger priority, update the priority and restore min-heap property
del self.heap[idx]
self.heap.append((priority, c, i))
heapq.heapify(self.heap)
break
else:
# item is not in, so just add to priority queue
self.push(item, priority)
def dijkstra(mdp):
# init priority queue with problem start state
init_state = mdp.reset_state()
pq = PriorityQueue()
pq.push(init_state, 0)
# tracker {child: parent, cost}
path = {init_state: (None, 0)}
while not pq.is_empty():
# visit a node
state = pq.pop()
in_cost = path[state][1]
if mdp.is_goal(state):
break
# construct the successors
actions = mdp.get_possible_actions(state)
successors = []
for action in actions:
next_state, reward = mdp.get_state_reward_transition(state, action)
# prevent loops
if next_state == state:
continue
successors.append(next_state)
# relax the successors
for next_state in successors:
path_cost = in_cost + 1
# if never seen record the path with cost
if next_state not in path:
path[next_state] = state, path_cost
pq.push(next_state, path_cost)
# if visited but the path was longer, then update the pq and the path tracker
if path_cost < path[next_state][1]:
pq.update(next_state, path_cost)
path[next_state] = state, path_cost
# recontruct shortest path
# `state` var currently refers to the goal state after the loop above exits
states_visited = [state]
while state is not init_state:
state, _ = path[state] # grab the parent path[child] = parent
states_visited.insert(0, state)
return states_visited
def print_optimal_policy(mdp, agent, f=None):
# run the agent greedy
orig_epsilon = agent.epsilon
agent.epsilon = 0 # set eps to 0 so no exploration and measure length of path
states_visited, _, _ = agent.run_episode()
agent.epsilon = orig_epsilon
print_path(mdp, states_visited, f)
return len(states_visited)
def run_experiment(mdp, agent, n_runs, tol=0.25):
shortest_path = dijkstra(mdp)
shortest_path_len = len(shortest_path)
# print('Shortest path:')
# print_path(mdp, shortest_path)
print('Target shortest path of {}'.format(shortest_path_len))
num_updates = np.zeros(n_runs)
for i in range(n_runs):
# reset agent
agent.reset()
while True:
agent.run_episode()
path_len = print_optimal_policy(mdp, agent, open(os.devnull, 'w'))
# print('Current optimal policy path length ', path_len)
num_updates[i] = agent.num_updates
if (path_len - shortest_path_len)/path_len < tol:
break
print('Number of updates to shortest path: {}'.format(num_updates), end='\r')
print()
return np.mean(num_updates)
def test_dijkstra():
mdp = ResGridworld((2,4))
print_grid(mdp)
optimal_path = dijkstra(mdp)
print_path(mdp, optimal_path)
def test_run_experiment():
mdp = ResGridworld((1,1))
print_grid(mdp)
agent = PrioritizedSweepingAgent(mdp=mdp, n_planning_steps=5, theta=1e-5, alpha=0.6, epsilon=0.15, discount=0.95)
avg_num_updates = run_experiment(mdp, agent, 5)
print(avg_num_updates)
# --------------------
# Example 8.4 Prioritized Sweeping on Mazes
# Prioritized sweeping has been found to dramatically increase the speed at which optimal solutions are found in maze tasks,
# often by a factor of 5 to 10. A typical example is shown below.a
# These data are for a sequence of maze tasks of exactly the same structure as the one shown in Figure 8.3,
# except that they vary in the grid resolution. Prioritized sweeping maintained a decisive advantage over unprioritized Dyna-Q.
# Both systems made at most n = 5 updates per environmental interaction.
# --------------------
def ex_8_4():
# experiment parameters
n_runs = 5
grid_resolutions = [(2**x, 2**y) for x in range(3) for y in range(x-1, x+1)][1:]
# display and plotting labels
dummy_mdp = ResGridworld((1,1)) # set to initialize the gridworld_size and agents lists and will be overwriten during the experiment
gridworld_sizes = [(dummy_mdp.width * dummy_mdp.height - len(dummy_mdp.blocked_states))*x*y for x, y in grid_resolutions]
print('Running grid sizes: ', gridworld_sizes)
# initialize records
avg_num_updates_to_best_path = np.zeros((2, len(grid_resolutions)))
# run experiments
for j, res in enumerate(grid_resolutions):
mdp = ResGridworld(res)
agents = [PrioritizedSweepingAgent(mdp=mdp, n_planning_steps=5, theta=1e-5, alpha=0.6, epsilon=0.15, discount=0.95),
DynaQAgent(mdp=mdp, n_planning_steps=5, alpha=0.6, epsilon=0.15, discount=0.95)]
for i, agent in enumerate(agents):
print('Running resolution {} (free positions: {}) ...'.format(res, mdp.width*mdp.height - len(mdp.blocked_states)))
avg_num_updates_to_best_path[i, j] = run_experiment(mdp, agent, n_runs)
print(avg_num_updates_to_best_path)
plt.plot(np.arange(len(gridworld_sizes)), avg_num_updates_to_best_path[0], label='Prioritized sweeping')
plt.plot(np.arange(len(gridworld_sizes)), avg_num_updates_to_best_path[1], label='Dyna-Q')
plt.xlabel('Gridworld size (# states)')
plt.xticks(np.arange(len(gridworld_sizes)))
plt.gca().set_xticklabels(gridworld_sizes)
plt.ylabel('Updates until optimal solution')
plt.gca().set_yscale('log')
plt.ylim(10, 10**6)
plt.yticks([pow(10,i) for i in range(1,7)])
plt.legend()
plt.savefig('figures/ch08_ex_8_4.png')
plt.close()
if __name__ == '__main__':
np.random.seed(6)
ex_8_4()