This repository has been archived by the owner on Dec 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP8_EULERS_NUMBER_APPROXIMATION.html
751 lines (636 loc) · 51.5 KB
/
P8_EULERS_NUMBER_APPROXIMATION.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
<hr>
<p><strong>EULERS_NUMBER_APPROXIMATION</strong></p>
<hr>
<p><span style="background:#ffff00">The <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/C%2B%2B" target="_blank" rel="noopener">C++</a> program featured in this tutorial web page generates an approximation of the the mathematical constant named <strong>e</strong> (i.e. <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/E_(mathematical_constant)" target="_blank" rel="noopener">Euler’s Number</a>). The program user is prompted to enter a nonnegative integer to store in a variable named N. Then the approximate value of e is computed by adding N unique terms (and each of those N terms is 1 divided by <a style="background:#000000;color:#00ff00" href="https://karlinaobject.wordpress.com/factorial/" target="_blank" rel="noopener">factorial</a> i (and i is a nonnegative integer which is smaller than or equal to (N – 1))). Note that the actual value of e is a limit which cannot be determined using a finite number of additions as described in the previous sentence. Instead, the actual value of <u>e is defined as the sum of every unique instance of (1/(i!)) where i is a nonnegative integer.</u></span></p>
<p><em>To view hidden text inside each of the preformatted text boxes below, scroll horizontally.</em></p>
<pre>Let E be 0.
Let N be a nonnegative integer.
For each nonnegative integer i (starting with 0 and ending with (N - i)):
Add (1/(i!)) to E.
End For.
// E represents the approximate value of Euler's Number.
// As N approaches INFINITY, E approaches Euler's Number.
</pre>
<hr>
<p><strong>SOFTWARE_APPLICATION_COMPONENTS</strong></p>
<hr>
<p>C++_source_file: <a style="background:#000000;color:#00ff00" href="https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation.cpp" target="_blank" rel="noopener">https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation.cpp</a></p>
<p>plain-text_file: <a style="background:#000000;color:#ff9000" href="https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation_output.txt" target="_blank" rel="noopener">https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation_output.txt</a></p>
<hr>
<p><strong>PROGRAM_COMPILATION_AND_EXECUTION</strong></p>
<hr>
<p>STEP_0: Copy and paste the C++ <a style="background:#000000;color:#00ff00" href="https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation.cpp" target="_blank" rel="noopener">source code</a> into a new text editor document and save that document as the following file name:</p>
<pre>eulers_number_approximation.cpp</pre>
<p>STEP_1: Open a <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Unix" target="_blank" rel="noopener">Unix</a> command line terminal application and set the current directory to wherever the C++ program file is located on the local machine (e.g. Desktop).</p>
<pre>cd Desktop</pre>
<p>STEP_2: Compile the C++ file into machine-executable instructions (i.e. object file) and then into an executable piece of software named <strong>app</strong> using the following command:</p>
<pre>g++ eulers_number_approximation.cpp -o app</pre>
<p>STEP_3: If the program compilation command does not work, then use the following commands (in top-down order) to install the C/C++ compiler (which is part of the <a style="background: #ff9000;color: #000000" href="https://en.wikipedia.org/wiki/GNU_Compiler_Collection" target="_blank" rel="noopener">GNU Compiler Collection (GCC)</a>):</p>
<pre>sudo apt install build-essential</pre>
<pre>sudo apt-get install g++</pre>
<p>STEP_4: After running the <strong>g++</strong> command, run the executable file using the following command:</p>
<pre>./app</pre>
<p>STEP_5: Once the application is running, the following prompt will appear:</p>
<pre>Enter a nonnegative integer which is no larger than 65:</pre>
<p>STEP_6: Enter a value for N using the keyboard.</p>
<p>STEP_7: Observe program results on the command line terminal and in the <a style="background:#000000;color:#ff9000" href="https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation_output.txt" target="_blank" rel="noopener">output file</a>.</p>
<hr>
<p><strong>PROGRAM_SOURCE_CODE</strong></p>
<hr>
<p>Note that the text inside of each of the the preformatted text boxes below appears on this web page (while rendered correctly by the <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Web_browser" target="_blank" rel="noopener">web browser</a>) to be identical to the content of that preformatted text box text’s respective <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Plain_text" target="_blank" rel="noopener">plain-text</a> file or <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Source_code" target="_blank" rel="noopener">source code</a> output file (whose <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/URL" target="_blank" rel="noopener">Uniform Resource Locator</a> is displayed as the <strong style="background:#000000;color:#00ff00">green</strong> <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Hyperlink" target="_blank" rel="noopener">hyperlink</a> immediately above that preformatted text box (if that hyperlink points to a <strong>source code file</strong>) or whose Uniform Resource Locator is displayed as the <strong style="background:#000000;color:#ff9000">orange</strong> hyperlink immediately above that preformatted text box (if that hyperlink points to a <strong>plain-text file</strong>)).</p>
<p>A <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Computer" target="_blank" rel="noopener">computer</a> interprets a C++ source code as a series of programmatic instructions (i.e. <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Software" target="_blank" rel="noopener">software</a>) which govern how the <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Computer_hardware" target="_blank" rel="noopener">hardware</a> of that computer behaves).</p>
<p><em>(Note that angle brackets which resemble <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/HTML" target="_blank" rel="noopener">HTML</a> tags (i.e. an “is less than” symbol (i.e. ‘<‘) followed by an “is greater than” symbol (i.e. ‘>’)) displayed on this web page have been replaced (at the source code level of this web page) with the Unicode symbols <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Less-than_sign" target="_blank" rel="noopener">U+003C</a> (which is rendered by the web browser as ‘<‘) and <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Greater-than_sign" target="_blank" rel="noopener">U+003E</a> (which is rendered by the web browser as ‘>’). That is because the <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/WordPress.com" target="_blank" rel="noopener">WordPress</a> web page editor or web browser interprets a plain-text version of an “is less than” symbol followed by an “is greater than” symbol as being an opening HTML tag (which means that the WordPress web page editor or web browser deletes or fails to display those (plain-text) inequality symbols and the content between those (plain-text) inequality symbols)).</em></p>
<p>C++_source_file: <a style="background:#000000;color:#00ff00" href="https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation.cpp" target="_blank" rel="noopener">https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation.cpp</a></p>
<hr>
<pre>
/**
* file: eulers_number_approximation.cpp
* type: C++ (source file)
* date: 16_SEPTEMBER_2024
* author: karbytes
* license: PUBLIC_DOMAIN
*/
/* preprocessing directives */
#include <iostream> // command line user interface input and output
#include <fstream> // file input and output
#define MAXIMUM_N 65 // constant which represents maximum N value
/* function prototypes */
unsigned long long compute_factorial_of_N(int N);
long double approximate_eulers_number(int N, std::ostream & output);
/**
* Compute N factorial (N!) using an iterative algorithm.
*
* If N is a natural number, then N! is the product of exactly one instance
* of each unique natural number which is smaller than or equal to N.
* N! := N * (N - 1) * (N - 2) * (N - 3) * ... * 3 * 2 * 1.
*
* If N is zero, then N! is one.
* 0! := 1.
*
* The value returned by this function is a nonnegative integer (which is N factorial).
*
* Assume that N is a nonnegative integer no larger than MAXIMUM_N.
*/
unsigned long long compute_factorial_of_N(int N)
{
// Declare an int type variable (i.e. a variable for storing integer values) named i.
// Set the initial value which is stored in i to zero.
int i = 0;
// Declare an unsigned long long type variable (i.e. a variable for storing nonnegative integer values) named F.
// Set the initial value which is stored in F to zero.
unsigned long long int F = 0;
// If N is larger than negative one and if N is not larger than MAXIMUM_N, set i to N.
// Otherwise, set i to 0.
i = ((N > -1) && (N <= MAXIMUM_N)) ? N : 0;
// If N is larger than zero, set F to N.
// Otherwise, set F to 1.
F = (N > 0) ? N : 1;
// While i is larger than zero: execute the code block enclosed by the following curly braces.
while (i > 0)
{
// If i is larger than 1, multiply F by (i - 1).
if (i > 1) F *= i - 1;
// Decrement i by 1.
i -= 1;
}
// Return the value stored in F.
// The value stored in F is factorial N.
// Factorial N is denoted by N followed by the exclamation mark.
return F; // Return the value represented by N!
}
/**
* Generate an approximation of the the mathematical constant named e (i.e. Euler’s Number).
*
* Euler's Number can be defined as follows:
* Let N be a natural number. Then,
* as the value of N approaches INFINITY,
* the value of (1 + (1/N)) ^ N approaches Euler's Number.
*
* Euler's Number can also be defined as follows:
* Let N be a nonnegative integer. Then,
* as the value of N approaches INFINITY,
* the sum of each instance of N unique terms such that each term of those N terms is
* 1 divided by the factorial of some nonnegative integer which is smaller than or equal to N
* approaches Euler's Number.
*
* The value returned by this function is a positive floating-point number (which is the Nth approximation of Euler's Number).
*
* Assume that N is a nonnegative integer no larger than MAXIMUM_N.
*/
long double approximate_eulers_number(int N, std::ostream & output)
{
// Declare a long double type variable (i.e. a variable for storing floating-point number values) named A.
// Set the initial value which is stored in A to zero.
long double A = 0.0;
// Declare an int type variable (i.e. a variable for storing integer values) named i.
// Set the initial value which is stored in i to zero.
int i = 0;
// Declare a pointer to an unsigned long long type variable named T.
// T initially stores the value 0 and will later be used to store the memory address of a dynamically-allocated array of N unsigned long long type values.
//
// A pointer variable stores 0 or else the memory address of a variable of the corresponding data type.
// The value stored in a pointer is a sixteen-character memory address which denotes the first memory cell in a chunk of contiguous memory cells
// (and that chunk of contiguous memory cells is exactly as large as is the data capacity of a variable of that pointer's corresponding data type).
// Note that each memory cell has a data capacity of one byte.
unsigned long long * T;
// If N is smaller than one or if N is larger than MAXIMUM_N, set N to one.
if ((N < 1) || (N > MAXIMUM_N)) N = 1;
// Dynamically allocate N contiguous unsigned long long sized chunks of memory to an array for storing N floating-point values.
// Store the memory address of the first element of that array in T.
T = new unsigned long long [N];
// Print the previous command and comments associated with that command to the output stream.
output << "\n\n// Dynamically allocate N contiguous unsigned long long sized chunks of memory to an array for storing N floating-point values.";
output << "\n// Store the memory address of the first element of that array in T.";
output << "\nT = new unsigned long long [N];";
// Print "A := {A}. // variable to store the Nth approximation of Euler's Number" to the output stream.
output << "\n\nA := " << A << ". // variable to store the Nth approximation of Euler's Number";
// Print "N := {N}. // number of elements in the array of unsigned long long type values pointed to by T" to the output stream.
output << "\n\nN := " << N << ". // number of elements in the array of unsigned long long type values pointed to by T";
// Print "sizeof(unsigned long long) = {sizeof(unsigned long long)}. // number of bytes" to the output stream.
output << "\n\nsizeof(unsigned long long) = " << sizeof(unsigned long long) << ". // number of bytes";
// Print "&T = {&T}. // memory address of unsigned long long type variable named T" to the output stream.
output << "\n\n&T = " << &T << ". // memory address of unsigned long long type variable named T";
// Print "T := {T}. // memory address which is stored in T" to the output stream.
output << "\n\nT = " << T << ". // memory address which is stored in T";
// Print "(*T) := {*T}. // unsigned long long type value whose address is stored in T" to the output stream.
output << "\n\n(*T) = " << (*T) << ". // unsigned long long type value whose address is stored in T";
// Print "Displaying the memory address of each element of array T..." to the output stream.
output << "\n\nDisplaying the memory address of each element of array T...\n";
// For each integer value represented by i (starting with 0 and ending with (N - 1) in ascending order):
// print the memory address of the ith element of the array represented by T to the output stream.
for (i = 0; i < N; i += 1)
{
// Print "&T[{i}] = {&T[i]}. // memory address of T[{i}]" to the output stream.
output << "\n&T[" << i << "] = " << &T[i] << ". // memory address of T[" << i << "]";
}
// Print "Storing the factorial of each nonnegative integer which is smaller than N in array T..." to the output stream.
output << "\n\nStoring the factorial of each nonnegative integer which is smaller than N in array T...\n";
// For each integer value represented by i (starting with 0 and ending with (N - 1) in ascending order):
// set the value of the ith element of array T to i! and
// print the data value which is stored in the ith element of the array to the output stream.
for (i = 0; i < N; i += 1)
{
// Print "T[{i}] := factorial({i}) = {i}! = " to the output stream.
output << "\nT[" << i << "] := factorial(" << i << ") = (" << i << ")! = ";
// Store i! in T[i].
T[i] = compute_factorial_of_N(i);
// Print "{T[i]}." to the output stream.
output << T[i] << ".";
}
// Print "Computing the appoximate value of Euler's Number by adding up the reciprocal of each value in array T..." to the output stream.
output << "\n\nComputing the appoximate value of Euler's Number by adding up the reciprocal of each value in array T...\n";
// For each integer value represented by i (starting with 0 and ending with (N - 1) in ascending order):
// print the value of (1 / T[i]) to the output stream.
for (i = 0; i < N; i += 1) output << "\n(1 / T[" << i << "]) = (1 / " << T[i] << ") = " << (long double) 1 / T[i] << ".";
// For each integer value represented by i (starting with 0 and ending with (N - 1) in ascending order):
// add the value of (1 / (N - i)!) to A and print the data value which is stored in A to the output stream.
for (i = 0; i < N; i += 1)
{
output << "\n\nA := A + (1 / (" << i << ")!)";
output << "\n = " << A << " + (1 / " << T[i] << ")";
output << "\n = " << A << " + " << (long double) 1 / T[i];
A += (long double) 1 / T[i];
output << "\n = " << A << ".";
}
// De-allocate memory which was dynamically assigned to the array named T.
delete [] T;
// Return the value which is stored in A.
return A;
}
/* program entry point */
int main()
{
// Declare a file output stream object named file.
std::ofstream file;
// Declare an int type variable (i.e. a variable for storing integer values) named N.
// Set the initial value which is stored in N to one.
int N = 1;
// Declare a long double type variable (i.e. a variable for storing floating-point number values) named B.
// Set the initial value which is stored in B to one.
long double B = 1.0;
// Set the number of digits of floating-point numbers which are printed to the command line terminal to 100 digits.
std::cout.precision(100);
// Set the number of digits of floating-point numbers which are printed to the file output stream to 100 digits.
file.precision(100);
/**
* If the file named eulers_number_approximation_output.txt does not already exist
* inside of the same file directory as the file named eulers_number_approximation.cpp,
* create a new file named eulers_number_approximation_output.txt in that directory.
*
* Open the plain-text file named eulers_number_approximation_output.txt
* and set that file to be overwritten with program data.
*/
file.open("eulers_number_approximation_output.txt");
// Print an opening message to the command line terminal.
std::cout << "\n\n--------------------------------";
std::cout << "\nSTART OF PROGRAM";
std::cout << "\n--------------------------------";
// Print an opening message to the file output stream.
file << "--------------------------------";
file << "\nSTART OF PROGRAM";
file << "\n--------------------------------";
// Print "Enter a nonnegative integer which is no larger than {MAXIMUM_N}: " to the command line terminal.
std::cout << "\n\nEnter a nonnegative integer which is no larger than " << MAXIMUM_N << ": ";
// Scan the command line terminal for the most recent keyboard input value.
std::cin >> N;
// Compute the Nth approximation of Euler's Number and store the result in B.
// Print the steps involved in generating the Nth approximation of Euler's Number to the command line terminal.
B = approximate_eulers_number(N, std::cout);
// Print the steps involved in generating the Nth approximation of Euler's Number to the file output stream.
approximate_eulers_number(N, file);
// Print "B ::= eulers_number_approximation(N) = {B}." to the command line terminal.
std::cout << "\n\nB := eulers_number_approximation(N) := " << B << ".";
// Print "B := eulers_number_approximation(N) := {B}." to the file output stream.
file << "\n\nB = eulers_number_approximation(N) := " << B << ".";
// Print a closing message to the command line terminal.
std::cout << "\n\n--------------------------------";
std::cout << "\nEND OF PROGRAM";
std::cout << "\n--------------------------------\n\n";
// Print a closing message to the file output stream.
file << "\n\n--------------------------------";
file << "\nEND OF PROGRAM";
file << "\n--------------------------------";
// Close the file output stream.
file.close();
// Exit the program.
return 0;
}</pre>
<hr>
<p><strong>SAMPLE_PROGRAM_OUTPUT</strong></p>
<hr>
<p>The text in the preformatted text box below was generated by one use case of the C++ program featured in this <a style="background:#ff9000;color:#000000" href="https://en.wikipedia.org/wiki/Computer_programming" target="_blank" rel="noopener">computer programming</a> tutorial web page.</p>
<p>plain-text_file: <a style="background:#000000;color:#ff9000" href="https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation_output.txt" target="_blank" rel="noopener">https://raw.githubusercontent.com/karlinarayberinger/KARLINA_OBJECT_extension_pack_20/main/eulers_number_approximation_output.txt</a></p>
<hr>
<pre>
--------------------------------
START OF PROGRAM
--------------------------------
// Dynamically allocate N contiguous unsigned long long sized chunks of memory to an array for storing N floating-point values.
// Store the memory address of the first element of that array in T.
T = new unsigned long long [N];
A := 0. // variable to store the Nth approximation of Euler's Number
N := 50. // number of elements in the array of unsigned long long type values pointed to by T
sizeof(unsigned long long) = 8. // number of bytes
&T = 0x7ffdd6c0ea68. // memory address of unsigned long long type variable named T
T = 0x6523bf6c5cc0. // memory address which is stored in T
(*T) = 27149465285. // unsigned long long type value whose address is stored in T
Displaying the memory address of each element of array T...
&T[0] = 0x6523bf6c5cc0. // memory address of T[0]
&T[1] = 0x6523bf6c5cc8. // memory address of T[1]
&T[2] = 0x6523bf6c5cd0. // memory address of T[2]
&T[3] = 0x6523bf6c5cd8. // memory address of T[3]
&T[4] = 0x6523bf6c5ce0. // memory address of T[4]
&T[5] = 0x6523bf6c5ce8. // memory address of T[5]
&T[6] = 0x6523bf6c5cf0. // memory address of T[6]
&T[7] = 0x6523bf6c5cf8. // memory address of T[7]
&T[8] = 0x6523bf6c5d00. // memory address of T[8]
&T[9] = 0x6523bf6c5d08. // memory address of T[9]
&T[10] = 0x6523bf6c5d10. // memory address of T[10]
&T[11] = 0x6523bf6c5d18. // memory address of T[11]
&T[12] = 0x6523bf6c5d20. // memory address of T[12]
&T[13] = 0x6523bf6c5d28. // memory address of T[13]
&T[14] = 0x6523bf6c5d30. // memory address of T[14]
&T[15] = 0x6523bf6c5d38. // memory address of T[15]
&T[16] = 0x6523bf6c5d40. // memory address of T[16]
&T[17] = 0x6523bf6c5d48. // memory address of T[17]
&T[18] = 0x6523bf6c5d50. // memory address of T[18]
&T[19] = 0x6523bf6c5d58. // memory address of T[19]
&T[20] = 0x6523bf6c5d60. // memory address of T[20]
&T[21] = 0x6523bf6c5d68. // memory address of T[21]
&T[22] = 0x6523bf6c5d70. // memory address of T[22]
&T[23] = 0x6523bf6c5d78. // memory address of T[23]
&T[24] = 0x6523bf6c5d80. // memory address of T[24]
&T[25] = 0x6523bf6c5d88. // memory address of T[25]
&T[26] = 0x6523bf6c5d90. // memory address of T[26]
&T[27] = 0x6523bf6c5d98. // memory address of T[27]
&T[28] = 0x6523bf6c5da0. // memory address of T[28]
&T[29] = 0x6523bf6c5da8. // memory address of T[29]
&T[30] = 0x6523bf6c5db0. // memory address of T[30]
&T[31] = 0x6523bf6c5db8. // memory address of T[31]
&T[32] = 0x6523bf6c5dc0. // memory address of T[32]
&T[33] = 0x6523bf6c5dc8. // memory address of T[33]
&T[34] = 0x6523bf6c5dd0. // memory address of T[34]
&T[35] = 0x6523bf6c5dd8. // memory address of T[35]
&T[36] = 0x6523bf6c5de0. // memory address of T[36]
&T[37] = 0x6523bf6c5de8. // memory address of T[37]
&T[38] = 0x6523bf6c5df0. // memory address of T[38]
&T[39] = 0x6523bf6c5df8. // memory address of T[39]
&T[40] = 0x6523bf6c5e00. // memory address of T[40]
&T[41] = 0x6523bf6c5e08. // memory address of T[41]
&T[42] = 0x6523bf6c5e10. // memory address of T[42]
&T[43] = 0x6523bf6c5e18. // memory address of T[43]
&T[44] = 0x6523bf6c5e20. // memory address of T[44]
&T[45] = 0x6523bf6c5e28. // memory address of T[45]
&T[46] = 0x6523bf6c5e30. // memory address of T[46]
&T[47] = 0x6523bf6c5e38. // memory address of T[47]
&T[48] = 0x6523bf6c5e40. // memory address of T[48]
&T[49] = 0x6523bf6c5e48. // memory address of T[49]
Storing the factorial of each nonnegative integer which is smaller than N in array T...
T[0] := factorial(0) = (0)! = 1.
T[1] := factorial(1) = (1)! = 1.
T[2] := factorial(2) = (2)! = 2.
T[3] := factorial(3) = (3)! = 6.
T[4] := factorial(4) = (4)! = 24.
T[5] := factorial(5) = (5)! = 120.
T[6] := factorial(6) = (6)! = 720.
T[7] := factorial(7) = (7)! = 5040.
T[8] := factorial(8) = (8)! = 40320.
T[9] := factorial(9) = (9)! = 362880.
T[10] := factorial(10) = (10)! = 3628800.
T[11] := factorial(11) = (11)! = 39916800.
T[12] := factorial(12) = (12)! = 479001600.
T[13] := factorial(13) = (13)! = 6227020800.
T[14] := factorial(14) = (14)! = 87178291200.
T[15] := factorial(15) = (15)! = 1307674368000.
T[16] := factorial(16) = (16)! = 20922789888000.
T[17] := factorial(17) = (17)! = 355687428096000.
T[18] := factorial(18) = (18)! = 6402373705728000.
T[19] := factorial(19) = (19)! = 121645100408832000.
T[20] := factorial(20) = (20)! = 2432902008176640000.
T[21] := factorial(21) = (21)! = 14197454024290336768.
T[22] := factorial(22) = (22)! = 17196083355034583040.
T[23] := factorial(23) = (23)! = 8128291617894825984.
T[24] := factorial(24) = (24)! = 10611558092380307456.
T[25] := factorial(25) = (25)! = 7034535277573963776.
T[26] := factorial(26) = (26)! = 16877220553537093632.
T[27] := factorial(27) = (27)! = 12963097176472289280.
T[28] := factorial(28) = (28)! = 12478583540742619136.
T[29] := factorial(29) = (29)! = 11390785281054474240.
T[30] := factorial(30) = (30)! = 9682165104862298112.
T[31] := factorial(31) = (31)! = 4999213071378415616.
T[32] := factorial(32) = (32)! = 12400865694432886784.
T[33] := factorial(33) = (33)! = 3400198294675128320.
T[34] := factorial(34) = (34)! = 4926277576697053184.
T[35] := factorial(35) = (35)! = 6399018521010896896.
T[36] := factorial(36) = (36)! = 9003737871877668864.
T[37] := factorial(37) = (37)! = 1096907932701818880.
T[38] := factorial(38) = (38)! = 4789013295250014208.
T[39] := factorial(39) = (39)! = 2304077777655037952.
T[40] := factorial(40) = (40)! = 18376134811363311616.
T[41] := factorial(41) = (41)! = 15551764317513711616.
T[42] := factorial(42) = (42)! = 7538058755741581312.
T[43] := factorial(43) = (43)! = 10541877243825618944.
T[44] := factorial(44) = (44)! = 2673996885588443136.
T[45] := factorial(45) = (45)! = 9649395409222631424.
T[46] := factorial(46) = (46)! = 1150331055211806720.
T[47] := factorial(47) = (47)! = 17172071447535812608.
T[48] := factorial(48) = (48)! = 12602690238498734080.
T[49] := factorial(49) = (49)! = 8789267254022766592.
Computing the appoximate value of Euler's Number by adding up the reciprocal of each value in array T...
(1 / T[0]) = (1 / 1) = 1.
(1 / T[1]) = (1 / 1) = 1.
(1 / T[2]) = (1 / 2) = 0.5.
(1 / T[3]) = (1 / 6) = 0.166666666666666666671184175718689601808364386670291423797607421875.
(1 / T[4]) = (1 / 24) = 0.04166666666666666666779604392967240045209109666757285594940185546875.
(1 / T[5]) = (1 / 120) = 0.0083333333333333333337286153753853401582318838336504995822906494140625.
(1 / T[6]) = (1 / 720) = 0.0013888888888888888888488901108241024839884403263567946851253509521484375.
(1 / T[7]) = (1 / 5040) = 0.0001984126984126984126983706828895211160546097062251647002995014190673828125.
(1 / T[8]) = (1 / 40320) = 2.48015873015873015872963353611901395068262132781455875374376773834228515625e-05.
(1 / T[9]) = (1 / 362880) = 2.7557319223985890651862166557528187500747396398992350441403687000274658203125e-06.
(1 / T[10]) = (1 / 3628800) = 2.755731922398589065134517867468254520395276596644862365792505443096160888671875e-07.
(1 / T[11]) = (1 / 39916800) = 2.505210838544171877468452021966260117517670547027108796100947074592113494873046875e-08.
(1 / T[12]) = (1 / 479001600) = 2.0876756987868098978903766849718834312647254558559239967507892288267612457275390625e-09.
(1 / T[13]) = (1 / 6227020800) = 1.60590438368216145992538343035032278473177931761572967417350810137577354907989501953125e-10.
(1 / T[14]) = (1 / 87178291200) = 1.1470745597729724713978127618279737549630346144478865166860259705572389066219329833984375e-11.
(1 / T[15]) = (1 / 1307674368000) = 7.6471637318198164760182876165707005249790527865393595374765567385111353360116481781005859375e-13.
(1 / T[16]) = (1 / 20922789888000) = 4.7794773323873852975114297603566878281119079915870997109228479615694595850072801113128662109375e-14.
(1 / T[17]) = (1 / 355687428096000) = 2.8114572543455207631627145083821066578811703150624439991912828507025778890238143503665924072265625e-15.
(1 / T[18]) = (1 / 6402373705728000) = 1.561920696858622646281755141228416303811315922642396415600911374621517779814894311130046844482421875e-16.
(1 / T[19]) = (1 / 121645100408832000) = 8.220635246624329716718057091551259700512195415301490541412415477551256515198474517092108726501464844e-18.
(1 / T[20]) = (1 / 2432902008176640000) = 4.110317623312164858406048319808521350574847169139635097818954361046511758459587326797191053628921509e-19.
(1 / T[21]) = (1 / 14197454024290336768) = 7.043516381804132984552581733844016154884793905449790136826614643386981762240850457601482048630714417e-20.
(1 / T[22]) = (1 / 17196083355034583040) = 5.815277696401867087825620308901504154687317329562106344189912444453752216055875123856822028756141663e-20.
(1 / T[23]) = (1 / 8128291617894825984) = 1.230270820744732847600809726906469170638222121705104977548044832558193917293465347029268741607666016e-19.
(1 / T[24]) = (1 / 10611558092380307456) = 9.423686807294170693318948175954948019683466235544601296535251525304105468805460077419411391019821167e-20.
(1 / T[25]) = (1 / 7034535277573963776) = 1.421558014198878427804392419215390985622496694920617818255280764058040565700480328814592212438583374e-19.
(1 / T[26]) = (1 / 16877220553537093632) = 5.925146245662008780449842354395082473873705632309314560039469494409983263416563659120583906769752502e-20.
(1 / T[27]) = (1 / 12963097176472289280) = 7.714205844379351220442307590283867888447153857127854916092693027609983325021403288701549172401428223e-20.
(1 / T[28]) = (1 / 12478583540742619136) = 8.013730057862709208685990201180404102359911354745243625185241551512477231611342176620382815599441528e-20.
(1 / T[29]) = (1 / 11390785281054474240) = 8.779025987464030508121718994662328990235623784252274002513994418002429842573519636061973869800567627e-20.
(1 / T[30]) = (1 / 9682165104862298112) = 1.032826841072776997026950697730699208625361299463986189138260421926072962772735763792297802865505219e-19.
(1 / T[31]) = (1 / 4999213071378415616) = 2.000314820996964391002384152827705545795997986125651431532452634775784416909516494342824444174766541e-19.
(1 / T[32]) = (1 / 12400865694432886784) = 8.063953151665285768186808446574614784476978848083338270190630530992112467991717039694776758551597595e-20.
(1 / T[33]) = (1 / 3400198294675128320) = 2.94100494540582352051641419389346837770780057644808278616539932081783148554166018584510311484336853e-19.
(1 / T[34]) = (1 / 4926277576697053184) = 2.029930275813802546836213263140678056231305513535500619692556199856817156224053633195580914616584778e-19.
(1 / T[35]) = (1 / 6399018521010896896) = 1.562739655646477380892696552554155496761738949953131410708552116381464536232215323252603411674499512e-19.
(1 / T[36]) = (1 / 9003737871877668864) = 1.110649837023139300042549561205190561515953323270939067541196991093996326860349199705524370074272156e-19.
(1 / T[37]) = (1 / 1096907932701818880) = 9.116535400896201500929943441933132123874700032396657688457333604606369625855677440995350480079650879e-19.
(1 / T[38]) = (1 / 4789013295250014208) = 2.088112808105691869924731083569285259541630716029320990911684108098586576396371583541622385382652283e-19.
(1 / T[39]) = (1 / 2304077777655037952) = 4.340131265090123433015478527485500881114515851366072819926298178606904887288919780985452234745025635e-19.
(1 / T[40]) = (1 / 18376134811363311616) = 5.441840791141925413183004478172199152903907339519060119881344722830157634163583679764997214078903198e-20.
(1 / T[41]) = (1 / 15551764317513711616) = 6.430138597675660950353326517785726873973361451550566389280682460562188484942680588574148714542388916e-20.
(1 / T[42]) = (1 / 7538058755741581312) = 1.326601493041323093804705908412158628351599110254046220970487675360274804070570553449215367436408997e-19.
(1 / T[43]) = (1 / 10541877243825618944) = 9.485976518894681088585945984202713644634515871086129452208364070146459634536029170703841373324394226e-20.
(1 / T[44]) = (1 / 2673996885588443136) = 3.739720137257896377418136692574652015537340387383811719072360135220078891649109209538437426090240479e-19.
(1 / T[45]) = (1 / 9649395409222631424) = 1.036334358362210981733926214460651797062864929183711526852237064981812619812728826218517497181892395e-19.
(1 / T[46]) = (1 / 1150331055211806720) = 8.693149641308025443189145265311138141228065069562171980261825821392762669859166635433211922645568848e-19.
(1 / T[47]) = (1 / 17172071447535812608) = 5.823409266932089994910827473586939922642565582829483048515030398258052191096112437662668526172637939e-20.
(1 / T[48]) = (1 / 12602690238498734080) = 7.934813766549598658208990425096079332701638958718522115960120841835281901843757168535375967621803284e-20.
(1 / T[49]) = (1 / 8789267254022766592) = 1.137751272203390128107638181047964849359748082386584368096104198870080481675870487379143014550209045e-19.
A := A + (1 / (0)!)
= 0 + (1 / 1)
= 0 + 1
= 1.
A := A + (1 / (1)!)
= 1 + (1 / 1)
= 1 + 1
= 2.
A := A + (1 / (2)!)
= 2 + (1 / 2)
= 2 + 0.5
= 2.5.
A := A + (1 / (3)!)
= 2.5 + (1 / 6)
= 2.5 + 0.166666666666666666671184175718689601808364386670291423797607421875
= 2.66666666666666666673894681149903362893383018672466278076171875.
A := A + (1 / (4)!)
= 2.66666666666666666673894681149903362893383018672466278076171875 + (1 / 24)
= 2.66666666666666666673894681149903362893383018672466278076171875 + 0.04166666666666666666779604392967240045209109666757285594940185546875
= 2.7083333333333333334778936229980672578676603734493255615234375.
A := A + (1 / (5)!)
= 2.7083333333333333334778936229980672578676603734493255615234375 + (1 / 120)
= 2.7083333333333333334778936229980672578676603734493255615234375 + 0.0083333333333333333337286153753853401582318838336504995822906494140625
= 2.71666666666666666691241915909671433837502263486385345458984375.
A := A + (1 / (6)!)
= 2.71666666666666666691241915909671433837502263486385345458984375 + (1 / 720)
= 2.71666666666666666691241915909671433837502263486385345458984375 + 0.0013888888888888888888488901108241024839884403263567946851253509521484375
= 2.7180555555555555558543134875293389995931647717952728271484375.
A := A + (1 / (7)!)
= 2.7180555555555555558543134875293389995931647717952728271484375 + (1 / 5040)
= 2.7180555555555555558543134875293389995931647717952728271484375 + 0.0001984126984126984126983706828895211160546097062251647002995014190673828125
= 2.71825396825396825421262969602054226925247348845005035400390625.
A := A + (1 / (8)!)
= 2.71825396825396825421262969602054226925247348845005035400390625 + (1 / 40320)
= 2.71825396825396825421262969602054226925247348845005035400390625 + 2.48015873015873015872963353611901395068262132781455875374376773834228515625e-05
= 2.71827876984126984142610405914552984540932811796665191650390625.
A := A + (1 / (9)!)
= 2.71827876984126984142610405914552984540932811796665191650390625 + (1 / 362880)
= 2.71827876984126984142610405914552984540932811796665191650390625 + 2.7557319223985890651862166557528187500747396398992350441403687000274658203125e-06
= 2.71828152557319224010175251482479552578297443687915802001953125.
A := A + (1 / (10)!)
= 2.71828152557319224010175251482479552578297443687915802001953125 + (1 / 3628800)
= 2.71828152557319224010175251482479552578297443687915802001953125 + 2.755731922398589065134517867468254520395276596644862365792505443096160888671875e-07
= 2.71828180114638447996931736039272209382033906877040863037109375.
A := A + (1 / (11)!)
= 2.71828180114638447996931736039272209382033906877040863037109375 + (1 / 39916800)
= 2.71828180114638447996931736039272209382033906877040863037109375 + 2.505210838544171877468452021966260117517670547027108796100947074592113494873046875e-08
= 2.718281826198492865352684955126960630877874791622161865234375.
A := A + (1 / (12)!)
= 2.718281826198492865352684955126960630877874791622161865234375 + (1 / 479001600)
= 2.718281826198492865352684955126960630877874791622161865234375 + 2.0876756987868098978903766849718834312647254558559239967507892288267612457275390625e-09
= 2.71828182828616856411656221848005543506587855517864227294921875.
A := A + (1 / (13)!)
= 2.71828182828616856411656221848005543506587855517864227294921875 + (1 / 6227020800)
= 2.71828182828616856411656221848005543506587855517864227294921875 + 1.60590438368216145992538343035032278473177931761572967417350810137577354907989501953125e-10
= 2.7182818284467590024162941819696470702183432877063751220703125.
A := A + (1 / (14)!)
= 2.7182818284467590024162941819696470702183432877063751220703125 + (1 / 87178291200)
= 2.7182818284467590024162941819696470702183432877063751220703125 + 1.1470745597729724713978127618279737549630346144478865166860259705572389066219329833984375e-11
= 2.71828182845822974799364357689768212367198430001735687255859375.
A := A + (1 / (15)!)
= 2.71828182845822974799364357689768212367198430001735687255859375 + (1 / 1307674368000)
= 2.71828182845822974799364357689768212367198430001735687255859375 + 7.6471637318198164760182876165707005249790527865393595374765567385111353360116481781005859375e-13
= 2.71828182845899446440883495679230463792919181287288665771484375.
A := A + (1 / (16)!)
= 2.71828182845899446440883495679230463792919181287288665771484375 + (1 / 20922789888000)
= 2.71828182845899446440883495679230463792919181287288665771484375 + 4.7794773323873852975114297603566878281119079915870997109228479615694595850072801113128662109375e-14
= 2.71828182845904225907636420078716810166952200233936309814453125.
A := A + (1 / (17)!)
= 2.71828182845904225907636420078716810166952200233936309814453125 + (1 / 355687428096000)
= 2.71828182845904225907636420078716810166952200233936309814453125 + 2.8114572543455207631627145083821066578811703150624439991912828507025778890238143503665924072265625e-15
= 2.71828182845904507062943789019726636979612521827220916748046875.
A := A + (1 / (18)!)
= 2.71828182845904507062943789019726636979612521827220916748046875 + (1 / 6402373705728000)
= 2.71828182845904507062943789019726636979612521827220916748046875 + 1.561920696858622646281755141228416303811315922642396415600911374621517779814894311130046844482421875e-16
= 2.71828182845904522675455072810990486686932854354381561279296875.
A := A + (1 / (19)!)
= 2.71828182845904522675455072810990486686932854354381561279296875 + (1 / 121645100408832000)
= 2.71828182845904522675455072810990486686932854354381561279296875 + 8.220635246624329716718057091551259700512195415301490541412415477551256515198474517092108726501464844e-18
= 2.71828182845904523499448723899973856532596983015537261962890625.
A := A + (1 / (20)!)
= 2.71828182845904523499448723899973856532596983015537261962890625 + (1 / 2432902008176640000)
= 2.71828182845904523499448723899973856532596983015537261962890625 + 4.110317623312164858406048319808521350574847169139635097818954361046511758459587326797191053628921509e-19
= 2.71828182845904523542816810799394033892895095050334930419921875.
A := A + (1 / (21)!)
= 2.71828182845904523542816810799394033892895095050334930419921875 + (1 / 14197454024290336768)
= 2.71828182845904523542816810799394033892895095050334930419921875 + 7.043516381804132984552581733844016154884793905449790136826614643386981762240850457601482048630714417e-20
= 2.71828182845904523542816810799394033892895095050334930419921875.
A := A + (1 / (22)!)
= 2.71828182845904523542816810799394033892895095050334930419921875 + (1 / 17196083355034583040)
= 2.71828182845904523542816810799394033892895095050334930419921875 + 5.815277696401867087825620308901504154687317329562106344189912444453752216055875123856822028756141663e-20
= 2.71828182845904523542816810799394033892895095050334930419921875.
A := A + (1 / (23)!)
= 2.71828182845904523542816810799394033892895095050334930419921875 + (1 / 8128291617894825984)
= 2.71828182845904523542816810799394033892895095050334930419921875 + 1.230270820744732847600809726906469170638222121705104977548044832558193917293465347029268741607666016e-19
= 2.718281828459045235645008542491041225730441510677337646484375.
A := A + (1 / (24)!)
= 2.718281828459045235645008542491041225730441510677337646484375 + (1 / 10611558092380307456)
= 2.718281828459045235645008542491041225730441510677337646484375 + 9.423686807294170693318948175954948019683466235544601296535251525304105468805460077419411391019821167e-20
= 2.718281828459045235645008542491041225730441510677337646484375.
A := A + (1 / (25)!)
= 2.718281828459045235645008542491041225730441510677337646484375 + (1 / 7034535277573963776)
= 2.718281828459045235645008542491041225730441510677337646484375 + 1.421558014198878427804392419215390985622496694920617818255280764058040565700480328814592212438583374e-19
= 2.71828182845904523586184897698814211253193207085132598876953125.
A := A + (1 / (26)!)
= 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 16877220553537093632)
= 2.71828182845904523586184897698814211253193207085132598876953125 + 5.925146245662008780449842354395082473873705632309314560039469494409983263416563659120583906769752502e-20
= 2.71828182845904523586184897698814211253193207085132598876953125.
A := A + (1 / (27)!)
= 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 12963097176472289280)
= 2.71828182845904523586184897698814211253193207085132598876953125 + 7.714205844379351220442307590283867888447153857127854916092693027609983325021403288701549172401428223e-20
= 2.71828182845904523586184897698814211253193207085132598876953125.
A := A + (1 / (28)!)
= 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 12478583540742619136)
= 2.71828182845904523586184897698814211253193207085132598876953125 + 8.013730057862709208685990201180404102359911354745243625185241551512477231611342176620382815599441528e-20
= 2.71828182845904523586184897698814211253193207085132598876953125.
A := A + (1 / (29)!)
= 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 11390785281054474240)
= 2.71828182845904523586184897698814211253193207085132598876953125 + 8.779025987464030508121718994662328990235623784252274002513994418002429842573519636061973869800567627e-20
= 2.71828182845904523586184897698814211253193207085132598876953125.
A := A + (1 / (30)!)
= 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 9682165104862298112)
= 2.71828182845904523586184897698814211253193207085132598876953125 + 1.032826841072776997026950697730699208625361299463986189138260421926072962772735763792297802865505219e-19
= 2.71828182845904523586184897698814211253193207085132598876953125.
A := A + (1 / (31)!)
= 2.71828182845904523586184897698814211253193207085132598876953125 + (1 / 4999213071378415616)
= 2.71828182845904523586184897698814211253193207085132598876953125 + 2.000314820996964391002384152827705545795997986125651431532452634775784416909516494342824444174766541e-19
= 2.7182818284590452360786894114852429993334226310253143310546875.
A := A + (1 / (32)!)
= 2.7182818284590452360786894114852429993334226310253143310546875 + (1 / 12400865694432886784)
= 2.7182818284590452360786894114852429993334226310253143310546875 + 8.063953151665285768186808446574614784476978848083338270190630530992112467991717039694776758551597595e-20
= 2.7182818284590452360786894114852429993334226310253143310546875.
A := A + (1 / (33)!)
= 2.7182818284590452360786894114852429993334226310253143310546875 + (1 / 3400198294675128320)
= 2.7182818284590452360786894114852429993334226310253143310546875 + 2.94100494540582352051641419389346837770780057644808278616539932081783148554166018584510311484336853e-19
= 2.71828182845904523629552984598234388613491319119930267333984375.
A := A + (1 / (34)!)
= 2.71828182845904523629552984598234388613491319119930267333984375 + (1 / 4926277576697053184)
= 2.71828182845904523629552984598234388613491319119930267333984375 + 2.029930275813802546836213263140678056231305513535500619692556199856817156224053633195580914616584778e-19
= 2.718281828459045236512370280479444772936403751373291015625.
A := A + (1 / (35)!)
= 2.718281828459045236512370280479444772936403751373291015625 + (1 / 6399018521010896896)
= 2.718281828459045236512370280479444772936403751373291015625 + 1.562739655646477380892696552554155496761738949953131410708552116381464536232215323252603411674499512e-19
= 2.71828182845904523672921071497654565973789431154727935791015625.
A := A + (1 / (36)!)
= 2.71828182845904523672921071497654565973789431154727935791015625 + (1 / 9003737871877668864)
= 2.71828182845904523672921071497654565973789431154727935791015625 + 1.110649837023139300042549561205190561515953323270939067541196991093996326860349199705524370074272156e-19
= 2.7182818284590452369460511494736465465393848717212677001953125.
A := A + (1 / (37)!)
= 2.7182818284590452369460511494736465465393848717212677001953125 + (1 / 1096907932701818880)
= 2.7182818284590452369460511494736465465393848717212677001953125 + 9.116535400896201500929943441933132123874700032396657688457333604606369625855677440995350480079650879e-19
= 2.7182818284590452378134128874620500937453471124172210693359375.
A := A + (1 / (38)!)
= 2.7182818284590452378134128874620500937453471124172210693359375 + (1 / 4789013295250014208)
= 2.7182818284590452378134128874620500937453471124172210693359375 + 2.088112808105691869924731083569285259541630716029320990911684108098586576396371583541622385382652283e-19
= 2.71828182845904523803025332195915098054683767259120941162109375.
A := A + (1 / (39)!)
= 2.71828182845904523803025332195915098054683767259120941162109375 + (1 / 2304077777655037952)
= 2.71828182845904523803025332195915098054683767259120941162109375 + 4.340131265090123433015478527485500881114515851366072819926298178606904887288919780985452234745025635e-19
= 2.71828182845904523846393419095335275414981879293918609619140625.
A := A + (1 / (40)!)
= 2.71828182845904523846393419095335275414981879293918609619140625 + (1 / 18376134811363311616)
= 2.71828182845904523846393419095335275414981879293918609619140625 + 5.441840791141925413183004478172199152903907339519060119881344722830157634163583679764997214078903198e-20
= 2.71828182845904523846393419095335275414981879293918609619140625.
A := A + (1 / (41)!)
= 2.71828182845904523846393419095335275414981879293918609619140625 + (1 / 15551764317513711616)
= 2.71828182845904523846393419095335275414981879293918609619140625 + 6.430138597675660950353326517785726873973361451550566389280682460562188484942680588574148714542388916e-20
= 2.71828182845904523846393419095335275414981879293918609619140625.
A := A + (1 / (42)!)
= 2.71828182845904523846393419095335275414981879293918609619140625 + (1 / 7538058755741581312)
= 2.71828182845904523846393419095335275414981879293918609619140625 + 1.326601493041323093804705908412158628351599110254046220970487675360274804070570553449215367436408997e-19
= 2.7182818284590452386807746254504536409513093531131744384765625.
A := A + (1 / (43)!)
= 2.7182818284590452386807746254504536409513093531131744384765625 + (1 / 10541877243825618944)
= 2.7182818284590452386807746254504536409513093531131744384765625 + 9.485976518894681088585945984202713644634515871086129452208364070146459634536029170703841373324394226e-20
= 2.7182818284590452386807746254504536409513093531131744384765625.
A := A + (1 / (44)!)
= 2.7182818284590452386807746254504536409513093531131744384765625 + (1 / 2673996885588443136)
= 2.7182818284590452386807746254504536409513093531131744384765625 + 3.739720137257896377418136692574652015537340387383811719072360135220078891649109209538437426090240479e-19
= 2.718281828459045239114455494444655414554290473461151123046875.
A := A + (1 / (45)!)
= 2.718281828459045239114455494444655414554290473461151123046875 + (1 / 9649395409222631424)
= 2.718281828459045239114455494444655414554290473461151123046875 + 1.036334358362210981733926214460651797062864929183711526852237064981812619812728826218517497181892395e-19
= 2.718281828459045239114455494444655414554290473461151123046875.
A := A + (1 / (46)!)
= 2.718281828459045239114455494444655414554290473461151123046875 + (1 / 1150331055211806720)
= 2.718281828459045239114455494444655414554290473461151123046875 + 8.693149641308025443189145265311138141228065069562171980261825821392762669859166635433211922645568848e-19
= 2.7182818284590452399818172324330589617602527141571044921875.
A := A + (1 / (47)!)
= 2.7182818284590452399818172324330589617602527141571044921875 + (1 / 17172071447535812608)
= 2.7182818284590452399818172324330589617602527141571044921875 + 5.823409266932089994910827473586939922642565582829483048515030398258052191096112437662668526172637939e-20
= 2.7182818284590452399818172324330589617602527141571044921875.
A := A + (1 / (48)!)
= 2.7182818284590452399818172324330589617602527141571044921875 + (1 / 12602690238498734080)
= 2.7182818284590452399818172324330589617602527141571044921875 + 7.934813766549598658208990425096079332701638958718522115960120841835281901843757168535375967621803284e-20
= 2.7182818284590452399818172324330589617602527141571044921875.
A := A + (1 / (49)!)
= 2.7182818284590452399818172324330589617602527141571044921875 + (1 / 8789267254022766592)
= 2.7182818284590452399818172324330589617602527141571044921875 + 1.137751272203390128107638181047964849359748082386584368096104198870080481675870487379143014550209045e-19
= 2.71828182845904524019865766693015984856174327433109283447265625.
B = eulers_number_approximation(N) := 2.71828182845904524019865766693015984856174327433109283447265625.
--------------------------------
END OF PROGRAM
--------------------------------</pre>
<hr>
<p>This web page was last updated on 06_NOVEMBER_2024. The content displayed on this web page is licensed as <a style="background:#000000;color:#ff9000" href="https://karlinaobject.wordpress.com/public_domain/" target="_blank" rel="noopener">PUBLIC_DOMAIN</a> intellectual property.</p>
<hr>