-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathlda.py
150 lines (130 loc) · 5.85 KB
/
lda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Latent Dirichlet Allocation + collapsed Gibbs sampling
# This code is available under the MIT License.
# (c)2010-2011 Nakatani Shuyo / Cybozu Labs Inc.
import numpy
import cPickle as pickle
class LDA:
def __init__(self, K, alpha, beta, docs, V, smartinit=True):
self.K = K
self.alpha = alpha # parameter of topics prior
self.beta = beta # parameter of words prior
self.docs = docs
self.V = V
self.z_m_n = [] # topics of words of documents
self.n_m_z = numpy.zeros((len(self.docs), K)) + alpha # word count of each document and topic
self.n_z_t = numpy.zeros((K, V)) + beta # word count of each topic and vocabulary
self.n_z = numpy.zeros(K) + V * beta # word count of each topic
self.N = 0
for m, doc in enumerate(docs):
self.N += len(doc)
z_n = []
for t in doc:
if smartinit:
p_z = self.n_z_t[:, t] * self.n_m_z[m] / self.n_z
z = numpy.random.multinomial(1, p_z / p_z.sum()).argmax()
else:
z = numpy.random.randint(0, K)
z_n.append(z)
self.n_m_z[m, z] += 1
self.n_z_t[z, t] += 1
self.n_z[z] += 1
self.z_m_n.append(numpy.array(z_n))
def inference(self):
"""learning once iteration"""
for m, doc in enumerate(self.docs):
z_n = self.z_m_n[m]
n_m_z = self.n_m_z[m]
for n, t in enumerate(doc):
# discount for n-th word t with topic z
z = z_n[n]
n_m_z[z] -= 1
self.n_z_t[z, t] -= 1
self.n_z[z] -= 1
# sampling topic new_z for t
p_z = self.n_z_t[:, t] * n_m_z / self.n_z
new_z = numpy.random.multinomial(1, p_z / p_z.sum()).argmax()
# set z the new topic and increment counters
z_n[n] = new_z
n_m_z[new_z] += 1
self.n_z_t[new_z, t] += 1
self.n_z[new_z] += 1
def worddist(self):
"""get topic-word distribution"""
return self.n_z_t / self.n_z[:, numpy.newaxis]
def perplexity(self, docs=None):
if docs == None: docs = self.docs
phi = self.worddist()
log_per = 0
N = 0
Kalpha = self.K * self.alpha
for m, doc in enumerate(docs):
theta = self.n_m_z[m] / (len(self.docs[m]) + Kalpha)
for w in doc:
log_per -= numpy.log(numpy.inner(phi[:,w], theta))
N += len(doc)
return numpy.exp(log_per / N)
def lda_learning(lda, iteration, voca):
pre_perp = lda.perplexity()
print "initial perplexity=%f" % pre_perp
for i in range(iteration):
lda.inference()
perp = lda.perplexity()
print "-%d p=%f" % (i + 1, perp)
if pre_perp:
if pre_perp < perp:
output_word_topic_dist(lda, voca)
pre_perp = None
else:
pre_perp = perp
output_word_topic_dist(lda, voca)
def output_word_topic_dist(lda, voca):
zcount = numpy.zeros(lda.K, dtype=int)
wordcount = [dict() for k in xrange(lda.K)]
for xlist, zlist in zip(lda.docs, lda.z_m_n):
for x, z in zip(xlist, zlist):
zcount[z] += 1
if x in wordcount[z]:
wordcount[z][x] += 1
else:
wordcount[z][x] = 1
phi = lda.worddist()
for k in xrange(lda.K):
print "\n-- topic: %d (%d words)" % (k, zcount[k])
for w in numpy.argsort(-phi[k])[:20]:
print "%s: %f (%d)" % (voca[w], phi[k,w], wordcount[k].get(w,0))
pickle.dump((lda.K, phi, voca.vocas), open("ldaphi.p", "wb"))
def main():
import optparse
import vocabulary
parser = optparse.OptionParser()
parser.add_option("-f", dest="filename", help="corpus filename")
parser.add_option("-c", dest="corpus", help="using range of Brown corpus' files(start:end)")
parser.add_option("--alpha", dest="alpha", type="float", help="parameter alpha", default=0.5)
parser.add_option("--beta", dest="beta", type="float", help="parameter beta", default=0.5)
parser.add_option("-k", dest="K", type="int", help="number of topics", default=20)
parser.add_option("-i", dest="iteration", type="int", help="iteration count", default=100)
parser.add_option("-s", dest="smartinit", action="store_true", help="smart initialize of parameters", default=False)
parser.add_option("--stopwords", dest="stopwords", help="exclude stop words", action="store_true", default=False)
parser.add_option("--seed", dest="seed", type="int", help="random seed")
parser.add_option("--df", dest="df", type="int", help="threshold of document freaquency to cut words", default=0)
(options, args) = parser.parse_args()
if not (options.filename or options.corpus): parser.error("need corpus filename(-f) or corpus range(-c)")
if options.filename:
corpus = vocabulary.load_file(options.filename)
else:
corpus = vocabulary.load_corpus(options.corpus)
if not corpus: parser.error("corpus range(-c) forms 'start:end'")
if options.seed != None:
numpy.random.seed(options.seed)
voca = vocabulary.Vocabulary(options.stopwords)
docs = [voca.doc_to_ids(doc) for doc in corpus]
if options.df > 0: docs = voca.cut_low_freq(docs, options.df)
lda = LDA(options.K, options.alpha, options.beta, docs, voca.size(), options.smartinit)
print "corpus=%d, words=%d, K=%d, a=%f, b=%f" % (len(corpus), len(voca.vocas), options.K, options.alpha, options.beta)
#import cProfile
#cProfile.runctx('lda_learning(lda, options.iteration, voca)', globals(), locals(), 'lda.profile')
lda_learning(lda, options.iteration, voca)
if __name__ == "__main__":
main()