-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
117 lines (80 loc) · 3.54 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# -*- coding: utf-8 -*-
import os, shutil
from os import listdir
from os.path import isfile, join
from PIL import Image
import csv
import numpy as np
import scipy.misc as ms
import glob
import cv2
from tqdm import tqdm
import torch
from torchvision.utils import save_image
def save_im(tensor, title):
image = tensor.cpu().clone()
x = image.clamp(0, 255)/255.
x = x.view(x.size(0), 224, 224)
save_image(x, "{}".format(title))
if __name__ == "__main__":
# ------------------------------------
# Face detection using facenet-pytorch
# (install) $ pip install facenet-pytorch
# (reference) https://www.kaggle.com/timesler/guide-to-mtcnn-in-facenet-pytorch
# ------------------------------------
root_dir = r'/<DATA_DIR>/aff_wild2/train_ext2/'
from facenet_pytorch import MTCNN #, InceptionResnetV1
mtcnn = MTCNN(image_size=224, margin=20, keep_all=False, post_process=False) # keep_all=False (detect single face)
pic_list = sorted([f for f in listdir(root_dir) if not isfile(join(root_dir, f))])
for i in range(1):
tmpdir = r'/<DATA_DIR>/aff_wild2/cropped_faces_train_ext1/'+pic_list[i]
if not os.path.exists(tmpdir):
os.makedirs(tmpdir)
ll = []
ll.append(sorted(glob.glob(root_dir + pic_list[i] + '/*.png'), key=os.path.getmtime))
ll = ll[0]
print("*-- Folder name is {}".format(pic_list[i]))
for j in tqdm(range(len(ll))):
if j == 0:
img_cropped = torch.ones(size=(3,224,224))
NAME = ll[j][:-4]
img = Image.open(NAME+'.png')
# Get cropped and prewhitened image tensor
try:
img_cropped = mtcnn(img, save_path=tmpdir+'/'+ll[j].split('/')[-1])
except TypeError:
save_im(img_cropped, tmpdir+'/'+ll[j].split('/')[-1])
#----------------
# Data annotation
#----------------
mypath = r'/<DATA_DIR>/aff_wild1/train_ext2/'
ll = glob.glob('/<DATA_DIR>/aff_wild2/cropped_faces_train_ext1/*')
ll.sort()
ll1 = []
for i in range(len(ll)):
if len(ll[i].split('/')[-1].split('.')) == 1:
ll1.append(ll[i].split('/')[-1])
remove_idx = 2
for j in range(len(ll1)):
mylist = [['subDirectory_filePath', 'valence', 'arousal']]
mypath = '/<DATA_DIR>/aff_wild2/cropped_faces_train_ext1/'+str(ll1[j])+'/*'
img_path = sorted(glob.glob(mypath), key=os.path.getmtime)
with open('/<DATA_DIR>/aff_wild2/Anno/Train_Set/'+str(ll1[j])+'.txt') as f:
anno_path = f.read().splitlines()
anno_path.pop(0)
img_path = img_path[remove_idx-1::remove_idx]
anno_path = anno_path[remove_idx-1::remove_idx]
### make csv file using list
name_list = []
for i in range(len(img_path)):
nn = img_path[i].split('/')[-2] + '/' + img_path[i].split('/')[-1]
name_list.append(nn)
min_value = np.min([len(anno_path), len(name_list)])
for i in range(min_value):
mylist.append([name_list[i],
anno_path[i].split(',')[0],
anno_path[i].split(',')[1]])
del img_path, anno_path
with open('/<DATA_DIR>/cropped_faces_train_ext2/training.csv', 'w') as myfile:
wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
wr.writerows(mylist)